Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2020
    In:  Remote Sensing Vol. 12, No. 17 ( 2020-09-03), p. 2858-
    In: Remote Sensing, MDPI AG, Vol. 12, No. 17 ( 2020-09-03), p. 2858-
    Kurzfassung: HY2B is now the latest altimetry mission that provides global nadir significant wave height (SWH) and sea surface wind speed. The validation and calibration of HY2B are carried out against National Data Buoy Center (NDBC) buoy observations from April 2019 to April 2020. In general, the HY2B altimeter measurements agree well with buoy observation, with scatter index of 9.4% for SWH, and 15.1% for wind speed. However, we observed a significant bias of 0.14 m for SWH and −0.42 m/s for wind speed. A deep learning technique is novelly applied for the calibration of HY2B SWH and wind speed. Deep neural network (DNN) is built and trained to correct SWH and wind speed by using input from parameters provided by the altimeter such as sigma0, sigma0 standard deviation (STD). The results based on DNN show a significant reduction of the bias, root mean square error (RMSE), and scatter index (SI) for both SWH and wind speed. Several DNN schemes based on different combination of input parameters have been examined in order to obtain the best model for the calibration. The analysis reveals that sigma0 STD is a key parameter for the calibration of HY2B SWH and wind speed.
    Materialart: Online-Ressource
    ISSN: 2072-4292
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2513863-7
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz