In:
Remote Sensing, MDPI AG, Vol. 13, No. 24 ( 2021-12-16), p. 5121-
Kurzfassung:
It is very common to apply convolutional neural networks (CNNs) to synthetic aperture radar (SAR) automatic target recognition (ATR). However, most of the SAR ATR methods using CNN mainly use the image features of SAR images and make little use of the unique electromagnetic scattering characteristics of SAR images. For SAR images, attributed scattering centers (ASCs) reflect the electromagnetic scattering characteristics and the local structures of the target, which are useful for SAR ATR. Therefore, we propose a network to comprehensively use the image features and the features related to ASCs for improving the performance of SAR ATR. There are two branches in the proposed network, one extracts the more discriminative image features from the input SAR image; the other extracts physically meaningful features from the ASC schematic map that reflects the local structure of the target corresponding to each ASC. Finally, the high-level features obtained by the two branches are fused to recognize the target. The experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset prove the capability of the SAR ATR method proposed in this letter.
Materialart:
Online-Ressource
ISSN:
2072-4292
Sprache:
Englisch
Verlag:
MDPI AG
Publikationsdatum:
2021
ZDB Id:
2513863-7