In:
Remote Sensing, MDPI AG, Vol. 14, No. 14 ( 2022-07-14), p. 3393-
Kurzfassung:
Monitoring morphologically dynamic rivers over large spatial domains at an adequate frequency is essential for informed river management to protect human life, ecosystems, livelihoods, and critical infrastructures. Leveraging the advancements in cloud-based remote sensing data processing through Google Earth Engine (GEE), a web-based, freely accessible seasonal river morphological monitoring system for Ayeyarwady River, Myanmar was developed through a collaborative process to assess changes in river morphology over time and space. The monitoring system uses Landsat satellite data spanning a 31-year long period (1988–2019) to map river planform changes along 3881.4 km of river length including Upper Ayeyarwady, Lower Ayeyarwady, and Chindwin. It is designed to operate on a seasonal timescale by comparing pre-monsoon and post-monsoon channel conditions to provide timely information on erosion and accretion areas for the stakeholders to support planning and management. The morphological monitoring system was validated with 85 reference points capturing the field conditions in 2019 and was found to be reliable for operational use with an overall accuracy of 89%. The average eroded riverbank area was calculated at around 45, 101, and 134 km2 for Chindwin, Upper Ayeyarwady, and Lower Ayeyarwady, respectively. The historical channel change assessment aided us to identify and categorize river reaches according to the frequency of changes. Six hotspots of riverbank erosion were identified including near Mandalay city, the confluence of Upper Ayeyarwady and Chindwin, near upstream of Magway city, downstream of Magway city, near Pyay city, and upstream of the Ayeyarwady delta. The web-based monitoring system simplifies the application of freely available remote sensing data over the large spatial domain to assess river planform changes to support stakeholders’ operational planning and prioritizing investments for sustainable Ayeyarwady River management.
Materialart:
Online-Ressource
ISSN:
2072-4292
Sprache:
Englisch
Verlag:
MDPI AG
Publikationsdatum:
2022
ZDB Id:
2513863-7