Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Sensors Vol. 20, No. 21 ( 2020-11-09), p. 6390-
    In: Sensors, MDPI AG, Vol. 20, No. 21 ( 2020-11-09), p. 6390-
    Abstract: A new tactile sensing module was proposed to sense the contact force and location of an object on a robot hand, which was attached on the robot finger. Three air pressure sensors are installed at the tip of the finger to detect the contacting force at the points. To obtain a nominal contact force at the finger from data from the three air pressure sensors, a force estimation was developed based upon the learning of a deep neural network. The data from the three air pressure sensors were utilized as inputs to estimate the contact force at the finger. In the tactile module, the arrival time of the air pressure sensor data has been utilized to recognize the contact point of the robot finger against an object. Using the three air pressure sensors and arrival time, the finger location can be divided into 3 × 3 block locations. The resolution of the contact point recognition was improved to 6 × 4 block locations on the finger using an artificial neural network. The accuracy and effectiveness of the tactile module were verified using real grasping experiments. With this stable grasping, an optimal grasping force was estimated empirically with fuzzy rules for a given object.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2052857-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages