Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Sensors Vol. 21, No. 17 ( 2021-08-28), p. 5802-
    In: Sensors, MDPI AG, Vol. 21, No. 17 ( 2021-08-28), p. 5802-
    Abstract: Capability assessment plays a crucial role in the demonstration and construction of equipment. To improve the accuracy and stability of capability assessment, we study the neural network learning algorithms in the field of capability assessment and index sensitivity. Aiming at the problem of overfitting and parameter optimization in neural network learning, the paper proposes an improved machine learning algorithm—the Ensemble Learning Based on Policy Optimization Neural Networks (ELPONN) with the policy optimization and ensemble learning. This algorithm presents an optimized neural network learning algorithm through different strategies evolution, and builds an ensemble learning model of multi-intelligent algorithms to assess the capability and analyze the sensitivity of the indexes. Through the assessment of capabilities, the algorithm effectively avoids parameter optimization from entering the minimum point in performance to improve the accuracy of equipment capability assessment, which is significantly better than previous neural network assessment methods. The experimental results show that the mean relative error is 4.10%, which is better than BP, GABP, and early stopping. The ELPONN algorithm has better accuracy and stability performance, and meets the requirements of capability assessment.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2052857-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages