Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Sensors, MDPI AG, Vol. 22, No. 7 ( 2022-03-27), p. 2562-
    Kurzfassung: SWIR imaging bears considerable advantages over visible-light (color) and thermal images in certain challenging propagation conditions. Thus, the SWIR imaging channel is frequently used in multi-spectral imaging systems (MSIS) for long-range surveillance in combination with color and thermal imaging to improve the probability of correct operation in various day, night and climate conditions. Integration of deep-learning (DL)-based real-time object detection in MSIS enables an increase in efficient utilization for complex long-range surveillance solutions such as border or critical assets control. Unfortunately, a lack of datasets for DL-based object detection models training for the SWIR channel limits their performance. To overcome this, by using the MSIS setting we propose a new cross-spectral automatic data annotation methodology for SWIR channel training dataset creation, in which the visible-light channel provides a source for detecting object types and bounding boxes which are then transformed to the SWIR channel. A mathematical image transformation that overcomes differences between the SWIR and color channel and their image distortion effects for various magnifications are explained in detail. With the proposed cross-spectral methodology, the goal of the paper is to improve object detection in SWIR images captured in challenging outdoor scenes. Experimental tests for two object types (cars and persons) using a state-of-the-art YOLOX model demonstrate that retraining with the proposed automatic cross-spectrally created SWIR image dataset significantly improves average detection precision. We achieved excellent improvements in detection performance in various variants of the YOLOX model (nano, tiny and x).
    Materialart: Online-Ressource
    ISSN: 1424-8220
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2052857-7
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz