Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Sensors, MDPI AG, Vol. 23, No. 5 ( 2023-02-21), p. 2366-
    Abstract: The development of sensors for water quality monitoring is crucial to protect water quality, aquatic biota and human health. Traditional sensor manufacturing methods have significant drawbacks, such as low fabrication freedom, limited material choice and expensive manufacturing cost. As a possible alternative method, 3D printing technologies are increasingly popular in sensor development due to their high versatility, fast fabrication/modification, powerful processing of different materials and ease of incorporation with other sensor systems. Surprisingly, a systematic review examining the application of 3D printing technology in water monitoring sensors has not yet been conducted. Here, we summarized the development history, market share and advantages/disadvantages of typical 3D printing techniques. Specifically focused on the 3D-printed sensor for water quality monitoring, we then reviewed the applications of 3D printing in the development of sensors’ supporting platform, cell, sensing electrode as well as all-3D-printed sensors. The fabrication materials and processing, and the sensor’s performances regarding detected parameters, response time and detection limit/sensitivity, were also compared and analyzed. Finally, the current drawbacks of 3D-printed water sensors and potential directions for future study were discussed. This review will substantially promote the understanding of 3D printing technology used in water sensor development and benefit the protection of water resources.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2052857-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages