Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2020
    In:  Symmetry Vol. 12, No. 1 ( 2020-01-02), p. 89-
    In: Symmetry, MDPI AG, Vol. 12, No. 1 ( 2020-01-02), p. 89-
    Kurzfassung: Linking textual information in finance reports to the stock return volatility provides a perspective on exploring useful insights for risk management. We introduce different kinds of word vector representations in the modeling of textual information: bag-of-words, pre-trained word embeddings, and domain-specific word embeddings. We apply linear and non-linear methods to establish a text regression model for volatility prediction. A large number of collected annually-published financial reports in the period from 1996 to 2013 is used in the experiments. We demonstrate that the domain-specific word vector learned from data not only captures lexical semantics, but also has better performance than the pre-trained word embeddings and traditional bag-of-words model. Our approach significantly outperforms with smaller prediction error in the regression task and obtains a 4%–10% improvement in the ranking task compared to state-of-the-art methods. These improvements suggest that the textual information may provide measurable effects on long-term volatility forecasting. In addition, we also find that the variations and regulatory changes in reports make older reports less relevant for volatility prediction. Our approach opens a new method of research into information economics and can be applied to a wide range of financial-related applications.
    Materialart: Online-Ressource
    ISSN: 2073-8994
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2518382-5
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz