Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2019
    In:  Research Vol. 2019 ( 2019-01)
    In: Research, American Association for the Advancement of Science (AAAS), Vol. 2019 ( 2019-01)
    Abstract: Sponges are open cellular materials with numerous interesting features. However, the potential of compartmentalized sponges has not been explored although many new properties and applications could be envisioned. We found that compartmentalized fibrous ultraporous polymer sponges with superhydrophobic surfaces could be designed as virtually wall-less reaction containers. With this, for example, the efficient removal of CO 2 from water and the controlled mineralization of calcium carbonate are possible. The high porosity ( 〉 99%) and superhydrophobicity make these sponges ideal candidates to hold alkanolamine solution for absorbing CO 2 and exchange gas through the walls of the sponges. The tubular sponge exhibits a much higher evaporation rate than a glass tube with the same diameter due to the much larger contact area between water and air. Therefore, the spongy reaction container also possesses a much faster adsorption rate, smaller equilibration time and higher efficiency for CO 2 adsorption than the glass tube container. In addition, these tubular sponges are also utilized to precipitate calcium carbonate by ammonium carbonate decomposition, which can control the deposition rates and products by tailoring the porosity and surface chemistry in the future. These new sponges provide an ideal basis for numerous new applications, for example, as breathable pipe lines for gas-liquid exchange, slag slurry carbonization, humidifier, and blood enricher.
    Type of Medium: Online Resource
    ISSN: 2639-5274
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 2949955-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages