Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Wegen Wartungsarbeiten steht das KOBV-Portal am 11.03.2025 ggf. nur eingeschränkt zur Verfügung. Wir bitten um Ihr Verständnis.
Export
  • 1
    Online Resource
    Online Resource
    IOP Publishing ; 2021
    In:  Japanese Journal of Applied Physics Vol. 60, No. SB ( 2021-05-01), p. SBBB07-
    In: Japanese Journal of Applied Physics, IOP Publishing, Vol. 60, No. SB ( 2021-05-01), p. SBBB07-
    Abstract: This paper presents an energy-efficient hardware accelerator for binarized convolutional neural networks (BCNNs). In this BCNN accelerator, a data-shift operation becomes dominant to effectively control input/weight-data streams under limited memory bandwidth. A magnetic-tunnel-junction (MTJ)-based nonvolatile field-programmable gate array (NV-FPGA), where the amount of stored-data updating is minimized in a configurable logic block, is a well-suited hardware platform for implementing such a BCNN accelerator. Owing to the nonvolatile storage capability of the NV-FPGA, not only power consumption in the data-shift operation but also standby power consumption in the idle function block is reduced without losing internal data. It is demonstrated under 45 nm complementary metal–oxide–semiconductor/MTJ process technologies that the energy consumption of the proposed BCNN accelerator is 50.7% lower than that of a BCNN accelerator using a conventional static-random-access-memory-based FPGA.
    Type of Medium: Online Resource
    ISSN: 0021-4922 , 1347-4065
    RVK:
    RVK:
    RVK:
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 218223-3
    detail.hit.zdb_id: 797294-5
    detail.hit.zdb_id: 2006801-3
    detail.hit.zdb_id: 797295-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages