In:
International Electronic Journal of Geometry, International Electronic Journal of Geometry, Person (Kazim ILARSLAN), Vol. 15, No. 2 ( 2022-10-31), p. 304-312
Abstract:
The object of the upcoming article is to characterize paracontact metric manifolds conceding $m$-quasi Einstein metric. First we establish that if the metric $g$ in a $K$-paracontact manifold is the $m$-quasi Einstein metric, then the manifold is of constant scalar curvature. Furthermore, we classify $(k,\mu)$-paracontact metric manifolds whose metric is $m$-quasi Einstein metric. Finally, we construct a non-trivial example of such a manifold.
Type of Medium:
Online Resource
ISSN:
1307-5624
DOI:
10.36890/iejg.1100147
Language:
Unknown
Publisher:
International Electronic Journal of Geometry, Person (Kazim ILARSLAN)
Publication Date:
2022
detail.hit.zdb_id:
2423649-4