In:
AIMS Mathematics, American Institute of Mathematical Sciences (AIMS), Vol. 7, No. 11 ( 2022), p. 19629-19640
Abstract:
〈abstract〉〈p〉Let $ G $ be a graph with the vertex set $ V(G) $. A set $ D\subseteq V(G) $ is a total k-dominating set if every vertex $ v\in V(G) $ has at least $ k $ neighbours in $ D $. The total k-domination number $ \gamma_{kt}(G) $ is the cardinality of the smallest total k-dominating set. For $ k = 2 $ the total 2-dominating set is called double total dominating set. In this paper we determine the upper and lower bounds and some exact values for double total domination number on pyrene network $ PY(n) $, $ n\geq 1 $ and hexabenzocoronene $ XC(n) $ $ n\geq 2 $, where pyrene network and hexabenzocoronene are composed of congruent hexagons.〈/p〉〈/abstract〉
Type of Medium:
Online Resource
ISSN:
2473-6988
DOI:
10.3934/math.20221076
Language:
Unknown
Publisher:
American Institute of Mathematical Sciences (AIMS)
Publication Date:
2022
detail.hit.zdb_id:
2917342-5