Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    American Institute of Mathematical Sciences (AIMS) ; 2022
    In:  Mathematical Biosciences and Engineering Vol. 20, No. 1 ( 2022), p. 1420-1433
    In: Mathematical Biosciences and Engineering, American Institute of Mathematical Sciences (AIMS), Vol. 20, No. 1 ( 2022), p. 1420-1433
    Kurzfassung: 〈abstract〉 〈p〉Blood cell image segmentation is an important part of the field of computer-aided diagnosis. However, due to the low contrast, large differences in cell morphology and the scarcity of labeled images, the segmentation performance of cells cannot meet the requirements of an actual diagnosis. To address the above limitations, we present a deep learning-based approach to study cell segmentation on pathological images. Specifically, the algorithm selects UNet++ as the backbone network to extract multi-scale features. Then, the skip connection is redesigned to improve the degradation problem and reduce the computational complexity. In addition, the atrous spatial pyramid pooling (ASSP) is introduced to obtain cell image information features from each layer through different receptive domains. Finally, the multi-sided output fusion (MSOF) strategy is utilized to fuse the features of different semantic levels, so as to improve the accuracy of target segmentation. Experimental results on blood cell images for segmentation and classification (BCISC) dataset show that the proposed method has significant improvement in Matthew's correlation coefficient (Mcc), Dice and Jaccard values, which are better than the classical semantic segmentation network.〈/p〉 〈/abstract〉
    Materialart: Online-Ressource
    ISSN: 1551-0018
    Sprache: Unbekannt
    Verlag: American Institute of Mathematical Sciences (AIMS)
    Publikationsdatum: 2022
    ZDB Id: 2265126-3
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz