Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2013
    In:  Key Engineering Materials Vol. 562-565 ( 2013-7), p. 802-808
    In: Key Engineering Materials, Trans Tech Publications, Ltd., Vol. 562-565 ( 2013-7), p. 802-808
    Abstract: A series of three-dimensional molecular dynamics (MD) simulations of nanoindentation are conducted to investigate the deformation behavior and phase transformation of monocrystalline silicon with different size hemispherical diamond indenters on (010) crystal plane. The technique of coordination number (CN) is employed to elucidate the detailed mechanism of phase transformation in the monocrystalline silicon. The simulation results show that the phase transformation varies according to the different radii indenters. In the phase transformation region beneath the indenter, the crystalline structures of Si-II, Si-XIII, and amorphous phase structures are observed. In addition, the results indicate that phase transformation with large indenters is not same with the small indenter. The six-coordinated silicon phase, Si-XIII, transformed from Si-I is identified. The phases of Si-II and Si-XIII, which have the same coordinate number, are successfully extracted from the transformation region during nanoindentation and amorphous phase will emerge upon unloading.
    Type of Medium: Online Resource
    ISSN: 1662-9795
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2013
    detail.hit.zdb_id: 2073306-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages