Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2017
    In:  The Journal of Immunology Vol. 199, No. 9 ( 2017-11-01), p. 3222-3233
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 199, No. 9 ( 2017-11-01), p. 3222-3233
    Abstract: Cytosolic dsDNA activates the cyclic GMP-AMP synthase (cGAS)–stimulator of IFN genes (STING) pathway to produce cytokines, including type I IFNs. The roles of many critical proteins, including NEMO, IKKβ, and TBK1, in this pathway are unclear because of the lack of an appropriate system to study. In this article, we report that lower FBS concentrations in culture medium conferred high sensitivities to dsDNA in otherwise unresponsive cells, whereas higher FBS levels abrogated this sensitivity. Based on this finding, we demonstrated genetically that NEMO was critically involved in the cGAS–STING pathway. Cytosolic DNA activated TRIM32 and TRIM56 to synthesize ubiquitin chains that bound NEMO and subsequently activated IKKβ. Activated IKKβ, but not IKKα, was required for TBK1 and NF-κB activation. In contrast, TBK1 was reciprocally required for NF-κB activation, probably by directly phosphorylating IKKβ. Thus, our findings identified a unique innate immune activation cascade in which TBK1–IKKβ formed a positive feedback loop to assure robust cytokine production during cGAS–STING activation.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2017
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages