Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2004
    In:  The Journal of Immunology Vol. 173, No. 8 ( 2004-10-15), p. 4985-4993
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 173, No. 8 ( 2004-10-15), p. 4985-4993
    Abstract: Lymphocytes circulate in the blood and upon chemokine activation rapidly bind, where needed, to microvasculature to mediate immune surveillance. Resorption of microvilli is an early morphological alteration induced by chemokines that facilitates lymphocyte emigration. However, the antecedent molecular mechanisms remain largely undefined. We demonstrate that Rac1 plays a fundamental role in chemokine-induced microvillar breakdown in human T lymphocytes. The supporting evidence includes: first, chemokine induces Rac1 activation within 5 s via a signaling pathway that involves Gαi. Second, constitutively active Rac1 mediates microvilli disintegration. Third, blocking Rac1 function by cell permeant C-terminal “Trojan” peptides corresponding to Rac1 (but not Rac2, Rho, or Cdc42) blocks microvillar loss induced by the chemokine stromal cell-derived factor 1α (SDF-1α). Furthermore, we demonstrate that the molecular mechanism of Rac1 action involves dephosphorylation-induced inactivation of the ezrin/radixin/moesin (ERM) family of actin regulators; such inactivation is known to detach the membrane from the underlying actin cytoskeleton, thereby facilitating disassembly of actin-based peripheral processes. Specifically, ERM dephosphorylation is induced by constitutively active Rac1 and stromal cell-derived factor 1α-induced ERM dephosphorylation is blocked by either the dominant negative Rac1 construct or by Rac1 C-terminal peptides. Importantly, the basic residues at the C terminus of Rac1 are critical to Rac1’s participation in ERM dephosphorylation and in microvillar retraction. Together, these data elucidate new roles for Rac1 in early signal transduction and cytoskeletal rearrangement of T lymphocytes responding to chemokine.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2004
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages