Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2007
    In:  The Journal of Immunology Vol. 179, No. 9 ( 2007-11-01), p. 6246-6254
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 179, No. 9 ( 2007-11-01), p. 6246-6254
    Abstract: Exercise/joint mobilization is therapeutic for inflammatory joint diseases like rheumatoid and osteoarthritis, but the mechanisms underlying its actions remain poorly understood. We report that biomechanical signals at low/physiological magnitudes are potent inhibitors of inflammation induced by diverse proinflammatory activators like IL-1β, TNF-α, and lipopolysaccharides, in fibrochondrocytes. These signals exert their anti-inflammatory effects by inhibiting phosphorylation of TAK1, a critical point where signals generated by IL-1β, TNF-α, and LPS converge to initiate NF-κB signaling cascade and proinflammatory gene induction. Additionally, biomechanical signals inhibit multiple steps in the IL-1β-induced proinflammatory cascade downstream of IκB kinase activation to regulate IκBα and IκBβ degradation and synthesis, and promote IκBα shuttling to export nuclear NF-κB and terminate its transcriptional activity. The findings demonstrate that biomechanical forces are but another important signal that uses NF-κB pathway to regulate inflammation by switching the molecular activation of discrete molecules involved in proinflammatory gene transcription.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2007
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages