Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 16, No. 4 ( 2016-02-22), p. 1937-1953
    Kurzfassung: Abstract. Continuous hourly measurements of gas-phase ammonia (NH3(g)) were taken from 13 July to 7 August 2014 on a research cruise throughout Baffin Bay and the eastern Canadian Arctic Archipelago. Concentrations ranged from 30 to 650 ng m−3 (40–870 pptv) with the highest values recorded in Lancaster Sound (74°13′ N, 84°00′ W). Simultaneous measurements of total ammonium ([NHx]), pH and temperature in the ocean and in melt ponds were used to compute the compensation point (χ), which is the ambient NH3(g) concentration at which surface–air fluxes change direction. Ambient NH3(g) was usually several orders of magnitude larger than both χocean and χMP (〈 0.4–10 ng m3) indicating these surface pools are net sinks of NH3. Flux calculations estimate average net downward fluxes of 1.4 and 1.1 ng m−2 s−1 for the open ocean and melt ponds, respectively. Sufficient NH3(g) was present to neutralize non-sea-salt sulfate (nss-SO42−) in the boundary layer during most of the study. This finding was corroborated with a historical data set of PM2.5 composition from Alert, Nunavut (82°30′ N, 62°20′ W) wherein the median ratio of NH4+/nss-SO42− equivalents was greater than 0.75 in June, July and August. The GEOS-Chem chemical transport model was employed to examine the impact of NH3(g) emissions from seabird guano on boundary-layer composition and nss-SO42− neutralization. A GEOS-Chem simulation without seabird emissions underestimated boundary layer NH3(g) by several orders of magnitude and yielded highly acidic aerosol. A simulation that included seabird NH3 emissions was in better agreement with observations for both NH3(g) concentrations and nss-SO42− neutralization. This is strong evidence that seabird colonies are significant sources of NH3 in the summertime Arctic, and are ubiquitous enough to impact atmospheric composition across the entire Baffin Bay region. Large wildfires in the Northwest Territories were likely an important source of NH3, but their influence was probably limited to the Central Canadian Arctic. Implications of seabird-derived N-deposition to terrestrial and aquatic ecosystems are also discussed.
    Materialart: Online-Ressource
    ISSN: 1680-7324
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2016
    ZDB Id: 2092549-9
    ZDB Id: 2069847-1
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz