In:
Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 16 ( 2022-08-18), p. 10489-10504
Abstract:
Abstract. Vehicle exhaust, as a major source of air pollutants in urban areas, contains a complex mixture of organic vapours including long-chain alkanes and aromatic hydrocarbons. The atmospheric oxidation of vehicle emissions is a highly complex system as inorganic gases (e.g. NOx and SO2) from other urban sources coexist and therefore remains poorly understood. In this work, the photooxidation of n-dodecane, 1,3,5-trimethylbenzene, and their mixture is studied in the presence of NOx and SO2 to mimic the atmospheric oxidation of urban vehicle emissions (including diesel and gasoline vehicles), and the formation of ozone and secondary aerosols is investigated. It is found that ozone formation is enhanced by higher OH concentration and higher temperature, but is influenced little by SO2 concentration. However, SO2 can largely enhance the particle formation in both number and mass concentrations, likely due to the promoted new particle formation and acid-catalysed heterogeneous reactions from the formation of sulfuric acid. In addition, organo-sulfates and organo-nitrates are detected in the formed particles, and the presence of SO2 can promote the formation of organo-sulfates. These results provide a scientific basis for systematically evaluating the effects of SO2, OH concentration, and temperature on the oxidation of mixed organic gases in the atmosphere that produce ozone and
secondary particles.
Type of Medium:
Online Resource
ISSN:
1680-7324
DOI:
10.5194/acp-22-10489-2022
DOI:
10.5194/acp-22-10489-2022-supplement
Language:
English
Publisher:
Copernicus GmbH
Publication Date:
2022
detail.hit.zdb_id:
2092549-9
detail.hit.zdb_id:
2069847-1