Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 15, No. 12 ( 2022-06-23), p. 3721-3745
    Abstract: Abstract. An optimal estimation-based algorithm is developed to retrieve the number density of excited oxygen (O2) molecules that generate airglow emissions near 0.76 µm (b1Σg+ or A band) and 1.27 µm (a1Δg or 1Δ band) in the upper atmosphere. Both oxygen bands are important for the remote sensing of greenhouse gases. The algorithm is applied to the limb spectra observed by the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument in both the nominal (tangent heights below ∼ 90 km) and mesosphere–lower thermosphere (MLT) modes (tangent heights spanning 50–150 km). The number densities of emitting O2 in the a1Δg band are retrieved in an altitude range of 25–100 km near-daily in 2010, providing a climatology of O2 a1Δg-band airglow emission. This climatology will help disentangle the airglow from backscattered light in nadir remote sensing of the a1Δg band. The global monthly distributions of the vertical column density of emitting O2 in a1Δg state show mainly latitudinal dependence without other discernible geographical patterns. Temperature profiles are retrieved simultaneously from the spectral shapes of the a1Δg-band airglow emission in the nominal limb mode (valid altitude range of 40–100 km) and from both a1Δg- and b1Σg+-band airglow emissions in the MLT mode (valid range of 60–105 km). The temperature retrievals from both airglow bands are consistent internally and in agreement with independent observations from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), with the absolute mean bias near or below 5 K and root mean squared error (RMSE) near or below 10 K. The retrieved emitting O2 number density and temperature provide a unique dataset for the remote sensing of greenhouse gases and constraining the chemical and physical processes in the upper atmosphere.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2505596-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages