Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Biogeosciences, Copernicus GmbH, Vol. 16, No. 13 ( 2019-07-16), p. 2771-2793
    Abstract: Abstract. To accurately capture the impacts of nitrogen (N) on the land carbon (C) sink in Earth system models, model responses to both N limitation and ecosystem N additions (e.g., from atmospheric N deposition and fertilizer) need to be evaluated. The response of the land C sink to N additions depends on the fate of these additions: that is, how much of the added N is lost from the ecosystem through N loss pathways or recovered and used to increase C storage in plants and soils. Here, we evaluate the C–N dynamics of the latest version of a global land model, the Community Land Model version 5 (CLM5), and how they vary when ecosystems have large N inputs and losses (i.e., an open N cycle) or small N inputs and losses (i.e., a closed N cycle). This comparison allows us to identify potential improvements to CLM5 that would apply to simulated N cycles along the open-to-closed spectrum. We also compare the short- (〈 3 years) and longer-term (5–17 years) N fates in CLM5 against observations from 13 long-term 15N tracer addition experiments at eight temperate forest sites. Simulations using both open and closed N cycles overestimated plant N recovery following N additions. In particular, the model configuration with a closed N cycle simulated that plants acquired more than twice the amount of added N recovered in 15N tracer studies on short timescales (CLM5: 46±12 %; observations: 18±12 %; mean across sites ±1 standard deviation) and almost twice as much on longer timescales (CLM5: 23±6 %; observations: 13±5 %). Soil N recoveries in simulations with closed N cycles were closer to observations in the short term (CLM5: 40±10 %; observations: 54±22 %) but smaller than observations in the long term (CLM5: 59±15 %; observations: 69±18 %). Simulations with open N cycles estimated similar patterns in plant and soil N recovery, except that soil N recovery was also smaller than observations in the short term. In both open and closed sets of simulations, soil N recoveries in CLM5 occurred from the cycling of N through plants rather than through direct immobilization in the soil, as is often indicated by tracer studies. Although CLM5 greatly overestimated plant N recovery, the simulated increase in C stocks to recovered N was not much larger than estimated by observations, largely because the model's assumed C:N ratio for wood was nearly half that suggested by measurements at the field sites. Overall, results suggest that simulating accurate ecosystem responses to changes in N additions requires increasing soil competition for N relative to plants and examining model assumptions of C:N stoichiometry, which should also improve model estimates of other terrestrial C–N processes and interactions.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2158181-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages