Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2020
    In:  Hydrology and Earth System Sciences Vol. 24, No. 12 ( 2020-12-16), p. 5937-5951
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 24, No. 12 ( 2020-12-16), p. 5937-5951
    Abstract: Abstract. The local land–atmosphere coupling (LoCo) investigates the interactions between soil conditions, surface fluxes, planetary boundary layer (PBL) growth, and the formations of convective clouds and precipitation. Studying LoCo over the Tibetan Plateau (TP) is of great significance for understanding the TP's role in the Asian water tower. A series of real-case simulations, using the Weather Research and Forecasting (WRF) model with different combinations of land surface model (LSM) schemes and PBL schemes, has been carried out to investigate the LoCo characteristics over a typical underlying surface in the central TP in the rainy season. The LoCo characteristics in the study area are analyzed by applying a mixing diagram to the simulation results. The analysis indicates that the WRF simulations, using the Noah with BouLac, Mellor-Yamada Nakanishi and Niino Level-2.5 PBL (MYNN), and Yonsei University (YSU) produce closer results to the observation in terms of curves of Cp⋅θ and Lv⋅q, surface fluxes (Hsfc and LEsfc), entrainment fluxes (Hent, and LEent) at site BJ of Nagqu Station (BJ/Nagqu) than those using the Community Land Model (CLM) with BouLac, MYNN, and YSU. The frequency distributions of Hsfc, LEsfc, Hent, and LEent in the study area confirm this result. The spatial distributions of simulated Hsfc, LEsfc, Hent, and LEent, using WRF with Noah and BouLac, suggest that the spatial distributions of Hsfc and LEsfc in the study area are consistent with that of soil moisture, but the spatial distributions of Hent and LEent are quite different from that of soil moisture. A close examination of the relationship between entrainment fluxes and cloud water content (QCloud) reveals that the grids with small Hent and large LEent tend to have high QCloud and Hsfc, suggesting that high Hsfc is conducive to convective cloud formation, which leads to small Hent and large LEent. A sensitivity analysis of LoCo to the soil moisture at site BJ/Nagqu indicates that, on a sunny day, an increase in soil moisture leads to an increase in LEsfc but decreases in Hsfc, Hent, and LEent. The sensitivity of the relationship between simulated maximum daytime PBL height (PBLH) and mean daytime evapotranspiration (ET) in the study area to soil moisture indicates the rate at which the maximum daytime PBLH decreases with the mean ET increase as the initial soil moisture goes up. The analysis of simulated Hsfc, LEsfc, Hent, and LEent under different soil moisture conditions reveals that the frequency of Hent ranging from 80 to 240 W m−2 and the frequency of LEent ranging from −240 to −90 W m−2 both increase as the initial soil moisture increases. Coupled with the changes in QCloud, the changes in Hent and LEent as the initial soil moisture increases indicate that the rise in soil moisture leads to an increase in the cloud amount but a decrease in QCloud.
    Type of Medium: Online Resource
    ISSN: 1607-7938
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2100610-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages