Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2021
    In:  Hydrology and Earth System Sciences Vol. 25, No. 7 ( 2021-07-02), p. 3783-3804
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 25, No. 7 ( 2021-07-02), p. 3783-3804
    Abstract: Abstract. Blowing snow processes are crucial in shaping the strongly heterogeneous spatiotemporal distribution of snow and in regulating subsequent snowpack evolution in mountainous terrain. Although empirical formulae and constant threshold wind speeds have been widely used to estimate the occurrence of blowing snow in regions with sparse observations, the scarcity of in situ observations in mountainous regions contrasts with the demands of models for reliable observations at high spatiotemporal resolution. Therefore, these methods struggle to accurately capture the high local variability of blowing snow. This study investigated the potential capability of the decision tree model (DTM) to detect blowing snow in the European Alps. The DTMs were constructed based on routine meteorological observations (mean wind speed, maximum wind speed, air temperature and relative humidity) and snow measurements (including in situ snow depth observations and satellite-derived products). Twenty repetitions of a random sub-sampling validation test with an optimal size ratio (0.8) between the training and validation subsets were applied to train and assess the DTMs. Results show that the maximum wind speed contributes most to the classification accuracy, and the inclusion of more predictor variables improves the overall accuracy. However, the spatiotemporal transferability of the DTM might be limited if the divergent distribution of wind speed exists between stations. Although both the site-specific DTMs and site-independent DTM show great ability in detecting blowing snow occurrence and are superior to commonly used empirical parameterizations, specific assessment indicators varied between stations and surface conditions. Events for which blowing snow and snowfall occurred simultaneously were detected the most reliably. Although models failed to fully reproduce the high frequency of local blowing snow events, they have been demonstrated to be a promising approach requiring limited meteorological variables and have the potential to scale to multiple stations across different regions.
    Type of Medium: Online Resource
    ISSN: 1607-7938
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2100610-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages