Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    SAGE Publications ; 2011
    In:  The International Journal of Artificial Organs Vol. 34, No. 2 ( 2011-02), p. 198-209
    In: The International Journal of Artificial Organs, SAGE Publications, Vol. 34, No. 2 ( 2011-02), p. 198-209
    Kurzfassung: The transplant of retinal pigment epithelium (RPE) cells on supports may well be an effective therapeutic approach to improve the visual results of patients with age-related macular degeneration. In this study, two biodegradable polyurethanes were investigated as supports for human RPE cells (ARPE-19). Methods Polyurethane aqueous dispersions based on poly(caprolactone) and/or poly(ethylene glycol) as soft segments, and isophorone diisocyanate and hydrazine as hard segments were prepared. Polyurethane films were produced by casting the dispersions and allowing them to dry at room temperature for one week. The ARPE-19 cells were seeded onto the polyurethane films and they were investigated as supports for in vitro adhesion, proliferation, and uniform distribution of differentiated ARPE-19 cells. Additionally, the in vivo ocular biocompatibility of the polyurethane films was evaluated. Results The RPE adhered to and proliferated onto the polyurethane supports, thus establishing cellPUD surface interactions. Upon confluence, the cells formed an organized monolayer, exhibited a polygonal appearance, and displayed actin filaments which ran along the upper cytoplasm. At 15 days of seeding, the occluding expression was confirmed between adjacent cells, representing the barrier functionality of epithelial cells on polymeric surfaces and the establishment of cell-cell interactions. Results from the in vivo study indicated that polyurethanes exhibited a high degree of short-term intraocular biocompatibility. Conclusions Biodegradable polyurethane films display the proper mechanical properties for an easy transscleral-driven subretinal implantation and can be considered as biocompatible supports for a functional ARPE-19 monolayer.
    Materialart: Online-Ressource
    ISSN: 0391-3988 , 1724-6040
    Sprache: Englisch
    Verlag: SAGE Publications
    Publikationsdatum: 2011
    ZDB Id: 1474999-3
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz