Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2004
    In:  Acta Physica Sinica Vol. 53, No. 7 ( 2004), p. 2244-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 53, No. 7 ( 2004), p. 2244-
    Abstract: In the form of joint experiment between China and Russia, the experimental studies of Zpinches of mixed wire array of aluminum (A1) and tungsten (W) were carried out on S-300 generator,which was located on Kurchatov Institute of Russia. The experimental results were compared with those of single A1 array and single W array, respectively. There are obvious difference between mixed one and single one in their photon spectral distributions. The intensity of K-series emission lines from the mixed wire array Z-pinch is lower than that from single A1 array. The radiated lines with wavelengths less than 1.6nm were not found in single W array Z-pinches. In the Z-pinch processes, the area radiating x-arys in mixed wire array is smaller than that of single A1 array, but is larger than that of single W array. The radiated energy from mixed wire array Z-pinch is higher than that from single A1 array, but is slightly lower than that from single W array. The FWHM of x-ray pulse with a maximal power 0.3—0.5TW and total energy 10—20kJ is about 25ns, which radiated from Z-pinches with a radial convergence of 4—5 on S-300 generator. The shadow photograph of the mixed wire-array Z-pinch plasma by laser probe shows that the core-corona configuration was formed and the corona was moving toward the center axis during the wire-array plasma formation, that the interface of the plasma is not clear, and that therer are a number of structures inside. They also suggests that there was an obvious development of Magneto Rayleigh-Taylor instability in the Z-pinch process as well.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2004
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages