Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2015
    In:  Acta Physica Sinica Vol. 64, No. 5 ( 2015), p. 054706-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 5 ( 2015), p. 054706-
    Abstract: Hypersonic rearward-facing step flow is one of the basic flow problems in the design of engine for endo-atmospheric hypersonic vehicle, including thermal protection, and aero-optical correction for infrared imaging window of hypersonic interceptors, etc. To know the characteristics of hypersonic rearward-facing step flow is of vital importance in improving the performances of vehicles, and understanding the basis of the flow. This paper investigates the characteristics of a two-dimensional hypersonic rearward-facing step flow, measures the surface heat transfer coefficient and the surface static pressure downstream the step, and compares the results with the values predicted using the hypersonic boundary layer theory. And the results are demonstrated by the flow structure visualization using NPLS (nano-based planar laser scattering) technique. It is concluded that for the hypersonic two-dimensional rearward-facing step flow, the surface heat transfer distribution can be determined directly by the boundary layer edge parameters at the step; and the viscous effect dominates the flow characteristic in the separation and reattachment region; whole in the far-field region downstream the step, the heat transfer coefficient approaches an asymptotic value that may be equal to the turbulent flat plate value. Furthermore, the boundary layer structure may depend on the ratio of boundary layer thickness to the height of step. It is concluded that, when studying the problem of hypersonic rearward-facing step using CFD (computational fluid dynamics) technology, choosing an appropriate turbulent model is needed.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages