Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    IOP Publishing ; 2019
    In:  Japanese Journal of Applied Physics Vol. 58, No. SC ( 2019-06-01), p. SCCD08-
    In: Japanese Journal of Applied Physics, IOP Publishing, Vol. 58, No. SC ( 2019-06-01), p. SCCD08-
    Abstract: Similarities and differences in the design of the interfaces between gate dielectrics and GaN-based semiconductors were systematically investigated with a focus on the thermal stability of the interlayers. Although the excellent electrical properties of a SiO 2 /GaN interface with a thin Ga-oxide interlayer (SiO 2 /GaO x /GaN) were deteriorated by high-temperature treatment at around 1000 °C, the thin oxide on the AlGaN surface (SiO 2 /GaO x /AlGaN) exhibited superior thermal stability and interface quality even after treatment at 1000 °C. Physical characterizations showed that thermal decomposition of the thin GaO x layer on the GaN surface is promoted by oxygen transfer, which produces volatile products, leading to remarkable roughening of the GaN surface. In contrast, decomposition of the thin GaO x layer was suppressed on the AlGaN surface under the high temperatures, preserving a smooth oxide surface. The mechanisms behind both the improved and degraded electrical properties in these GaN-based MOS structures are discussed on the basis of these findings.
    Type of Medium: Online Resource
    ISSN: 0021-4922 , 1347-4065
    RVK:
    RVK:
    RVK:
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 218223-3
    detail.hit.zdb_id: 797294-5
    detail.hit.zdb_id: 2006801-3
    detail.hit.zdb_id: 797295-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages