Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    IOP Publishing ; 2016
    In:  Japanese Journal of Applied Physics Vol. 55, No. 4S ( 2016-04-01), p. 04EA04-
    In: Japanese Journal of Applied Physics, IOP Publishing, Vol. 55, No. 4S ( 2016-04-01), p. 04EA04-
    Abstract: Liquid phase crystallization has emerged as a novel approach to grow large grained polycrystalline silicon films on glass with high electronic quality. In recent years a lot of effort was conducted by different groups to determine and optimize suitable interlayer materials, enhance the crystallographic quality or to improve post crystallization treatments. In this paper, we give an overview on liquid phase crystallization and describe the necessary process steps and discuss their influence on the absorber properties. Available line sources are compared and different interlayer configurations are presented. Furthermore, we present one-dimensional numerical simulations of a rear junction device, considering silicon absorber thicknesses between 1 and 500 µm. We vary the front surface recombination velocity as well as doping density and minority carrier lifetime in the absorber. The simulations suggest that a higher absorber doping density is beneficial for layer thicknesses below 20 µm or when the minority carrier lifetime is short. Finally, we discuss possible routes for device optimization and propose a hybride cell structure to circumvent current limitations in device design.
    Type of Medium: Online Resource
    ISSN: 0021-4922 , 1347-4065
    RVK:
    RVK:
    RVK:
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 218223-3
    detail.hit.zdb_id: 797294-5
    detail.hit.zdb_id: 2006801-3
    detail.hit.zdb_id: 797295-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages