Format:
Online-Ressource
ISSN:
2192-2659
Content:
A pH‐responsive nanocarrier is developed by coating nanoscale graphene oxide (NGO) with dual types of polymers, polyethylene glycol (PEG) and poly (allylamine hydrochloride) (PAH), the latter of which is then modified with 2,3‐dimethylmaleic anhydride (DA) to acquire pH‐dependent charge reversibility. After loading with doxorubicin (DOX), a chemotherapy drug, the obtained NGO‐PEG‐DA/DOX complex exhibits a dual pH‐responsiveness, showing markedly enhanced cellular uptake under the tumor microenvironmental pH, and accelerated DOX release under a further lowered pH inside cell lysosomes. Combining such a unique behavior with subsequently slow efflux of DOX, NGO‐PEG‐DA/DOX offers remarkably improved cell killing for drug‐resistant cancer cells under the tumor microenvironmental pH in comparison with free DOX. Exploiting its excellent photothermal conversion ability, combined chemo‐ and photothermal therapy is further demonstrated using NGO‐PEG‐DA/DOX, realizing a synergistic therapeutic effect. This work presents a novel design of surface chemistry on NGO for the development of smart drug delivery systems responding to the tumor microenvironment and external physical stimulus, with the potential to overcome drug resistance.
In:
volume:3
In:
number:8
In:
year:2014
In:
pages:1261-1271
In:
extent:11
In:
Advanced healthcare materials, Weinheim : Wiley-VCH, [2012]-, 3, Heft 8 (2014), 1261-1271 (gesamt 11), 2192-2659
Language:
English
DOI:
10.1002/adhm.201300549
URN:
urn:nbn:de:101:1-2023012305300965680864
URL:
https://doi.org/10.1002/adhm.201300549
URL:
https://nbn-resolving.org/urn:nbn:de:101:1-2023012305300965680864
URL:
https://d-nb.info/1278876642/34
URL:
https://doi.org/10.1002/adhm.201300549