Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States : Butterworth-Heinemann
    UID:
    (DE-604)BV047017305
    Umfang: 1 Online-Ressource , Illustrationen, Diagramme
    ISBN: 9780128184103
    Anmerkung: Front Cover -- Automotive Tire Noise and Vibrations -- Copyright Page -- Contents -- List of Contributors -- Preface -- 1 Background introduction -- References -- 2 Tire/road noise separation: tread pattern noise and road texture noise -- 2.1 Introduction -- 2.2 Close proximity measurement -- 2.3 Tire/road noise separation -- 2.3.1 Two noise components -- 2.3.2 Order tracking analysis -- 2.3.3 Noise separation results -- 2.4 Tire/road wheel noise separation and combination -- 2.5 Conclusion -- Acknowledgments -- References -- 3 Influence of tread pattern on tire/road noise -- 3.1 Introduction -- 3.2 Tire/road noise separation -- 3.3 Tread pattern parameterization -- 3.3.1 Tread profile spectrum -- 3.3.2 Air volume velocity spectrum -- 3.4 Correlation between tread pattern and tire noise -- 3.5 Conclusion -- Acknowledgments -- References -- 4 Influence of road texture on tire/road noise -- 4.1 Introduction -- 4.2 Rough and smooth pavement -- 4.2.1 Total noise -- 4.2.2 Tread pattern noise -- 4.2.3 Nontread pattern noise -- 4.2.4 Percent contribution from the two noise components -- 4.3 Pavement texture characterization -- 4.4 Spectral trend between pavement texture and tire/road noise -- 4.5 Transfer function and regression model -- 4.6 Conclusion -- Acknowledgments -- References -- 5 Measurement methods of tire/road noise -- 5.1 Introduction -- 5.2 Tire noise and vibrations: indoor testing -- 5.2.1 Indoor testing: structural borne noise characterization -- 5.2.1.1 Indoor structural borne noise characterization: stationary tire -- 5.2.1.2 Indoor structural borne noise characterization: rolling tire impact test -- 5.2.1.3 Indoor structural borne noise characterization: high frequency structural borne noise characterization -- 5.2.2 Indoor airborne noise characterization -- 5.3 Outdoor testing -- 5.3.1 Outdoor testing: subjective evaluation , 5.3.2 Outdoor testing: objective evaluation -- 5.3.2.1 Outdoor objective evaluation: structural borne noise -- 5.3.2.2 Outdoor objective evaluation: airborne noise -- 5.3.2.3 Outdoor objective evaluation: pass-by noise measurement -- 5.4 Summary -- References -- Further reading -- 6 Generation mechanisms of tire/road noise -- 6.1 Introduction -- 6.2 Tire structural borne noise and airborne noise -- 6.2.1 Tire structural borne noise -- 6.2.2 Tire airborne noise -- 6.3 Tire noise and vibration: generation mechanisms -- 6.3.1 Impact induced noise and vibration -- 6.3.2 Air pumping -- 6.3.3 Friction-induced noise and vibration -- 6.3.4 Tire nonuniformity as a vibration source -- 6.4 Tire structural borne noise transmission mechanism -- 6.4.1 Low frequency transmissibility (below 30Hz) -- 6.4.2 Mid-frequency transmissibility from 30 to 500Hz -- 6.4.3 Effect of rolling on tire transmissibility -- 6.5 Tire noise and vibration amplification by acoustic resonance -- 6.5.1 Tire cavity resonance -- 6.5.2 Tire pipe resonance -- 6.5.3 Tire horn effect -- 6.6 Summary -- References -- Further reading -- 7 Suspension vibration and transfer path analysis -- 7.1 Introduction -- 7.2 Excitations of suspension system from road and tire -- 7.2.1 Excitation from road roughness -- 7.2.2 Excitation generated by tire -- 7.3 Theoretical basis of transfer path analysis method -- 7.3.1 Traditional transfer path analysis method -- 7.3.1.1 Frequency response function -- 7.3.1.2 Identification of structural load -- 7.3.1.3 Analysis of transfer path -- 7.3.2 Operational transfer path analysis -- 7.4 Transfer path analysis of suspension vibration -- 7.4.1 Frequency response function of suspension and car body system -- 7.4.2 Identification of load between suspension and car body -- 7.4.3 Transfer path analysis of suspension vibration , 7.5 Transfer path analysis of structure-borne tire/road noise -- 7.5.1 Transfer function of structure-borne noise -- 7.5.2 Identification of load on path point and principal component analysis -- 7.5.3 Analysis of interior noise from tire/road interaction based on transfer path analysis -- 7.5.3.1 Transfer path analysis of structure-borne tire/road noise based on test -- 7.5.3.2 Control of structure-borne tire/road noise based on simulation -- 7.6 Summary -- Nomenclatures -- References -- 8 Structure-borne vibration of tire -- 8.1 Introduction -- 8.2 Modal characteristics of tire vibration and influencing parameters -- 8.2.1 Modal characteristics of tire vibration -- 8.2.2 Influencing parameters of modal characteristics of tire vibration -- 8.2.2.1 Influence of tire pressure -- 8.2.2.2 Influence of tread pattern -- 8.2.2.3 Influence of tire mass -- 8.2.2.4 Influences of belt angle and Young's moduli of belt cord and tread compound -- 8.3 Modal test methods of a tire -- 8.4 Analytical calculation method of tire mode -- 8.4.1 Two-dimensional ring model of a tire -- 8.4.1.1 Strain of ring -- 8.4.1.2 Initial stress -- 8.4.1.3 Velocity of point at middle surface of ring -- 8.4.1.4 Work of inflation pressure -- 8.4.2 Three-dimensional ring model of tire -- 8.4.2.1 Stress and strain of tire crown -- 8.4.2.2 Equations of motion of three-dimensional ring model -- 8.4.2.3 In-plane free vibration mode of a tire -- 8.4.2.4 Out-of-plane free vibration mode of a tire -- 8.5 Modal analysis of a tire based on finite element method -- 8.5.1 Differential equations of a dynamic system -- 8.5.2 Methods of solving natural frequency and modal shape -- 8.5.3 Establishment of finite element model of a tire -- 8.5.4 Natural frequency and modal shape of a tire -- 8.6 Summary -- Nomenclature -- References -- 9 Structural-acoustic analysis of tire cavity system , 9.1 Introduction -- 9.2 Frequency and wave number -- 9.3 Tire cavity resonance -- 9.4 Tire-cavity-wheel system -- 9.5 Tire cavity resonance frequency -- 9.5.1 Degenerate tire cavity modes -- 9.6 Tire tread natural frequency and mode shape -- 9.7 Structural-acoustic coupling of tire tread and cavity -- 9.7.1 Impedance-mobility approach -- 9.8 Finite element simulation of tire structural resonance -- 9.9 Finite element simulation of structural-acoustic coupling of tire cavity -- 9.10 Experiment using model from FEM -- 9.11 Effect of loaded tire -- 9.12 Road experiment using internal microphone -- 9.13 Summary -- Nomenclature -- References -- 10 Computer-aided engineering findings on the physics of tire/road noise -- 10.1 Introduction -- 10.2 Computer-aided engineering simulation methodologies -- 10.2.1 Deterministic methods at low frequency -- 10.2.1.1 Finite element method -- 10.2.1.2 Boundary element method -- 10.2.1.3 Waveguide finite element method -- 10.2.2 Energy methods at high frequency -- 10.2.2.1 Statistical energy analysis -- 10.2.2.2 Energy finite element analysis -- 10.2.3 Hybrid methods in the mid frequency range -- 10.3 Other computer-aided engineering simulation methodologies -- 10.3.1 Computational fluid dynamics -- 10.3.2 Transfer path analysis -- 10.4 Vehicle suspension corner module simulation -- 10.5 Mechanisms of the wheel imbalance induced vibration -- 10.6 Tire-road interaction caused by dynamic force variation induced by a hexagon tire -- 10.7 Tire-road interface impact force and friction force-induced vibration -- 10.8 Finite element modeling of tire-pavement interaction -- 10.9 Auralization models of tire/road noise -- 10.10 Trends and challenges in computer-aided engineering modeling of tire/road noise -- 10.11 Summary -- Nomenclature -- References -- 11 Tire cavity noise mitigation using acoustic absorbent materials , 11.1 Introduction -- 11.2 Sound absorption coefficient theory -- 11.2.1 Airflow resistivity -- 11.2.2 Empirical models -- 11.2.3 Effect of airflow resistivity -- 11.2.4 Effect of layer thickness -- 11.3 Absorption coefficient measurement methodologies -- 11.3.1 Impedance tube method -- 11.3.2 Alpha cabin -- 11.4 Tire cavity damping loss -- 11.5 Sound absorption with perforated plates, porous materials, and air gaps -- 11.6 Application to tire cavity -- 11.7 Multilayer configuration design -- 11.8 Analytical simulation of the multilayer sound absorber -- 11.9 Using finite element simulation -- 11.10 Experiments on tires -- 11.11 Experimental modal test (impact hammer test) -- 11.12 Experimental modal analysis test with a shaker excitation -- 11.13 Design of experiment (Taguchi) -- 11.14 Summary -- Nomenclature -- References -- 12 Statistical energy analysis of tire/road noise -- 12.1 Introduction -- 12.2 Basic principle of statistical energy analysis -- 12.2.1 Power balance equation of statistical energy analysis -- 12.2.2 Energy description of subsystem -- 12.2.3 Damping loss factor and coupling loss factor -- 12.3 Simulation of tire high-frequency vibration and tire cavity resonance noise -- 12.3.1 Statistical energy analysis model and simulation of tire structure -- 12.3.1.1 Subsystem partition and statistical energy analysis model of a tire -- 12.3.1.2 Parameters in statistical energy analysis model of a tire -- 12.3.1.3 Simulation results and analysis -- 12.3.2 Statistical energy analysis model and simulation of tire cavity system -- 12.3.2.1 Statistical energy analysis model of tire with cavity -- 12.3.2.2 Parameters of statistical energy analysis model and external excitation -- 12.3.2.3 Simulation of tire cavity system using statistical energy analysis -- 12.4 Tire/road noise modeling and simulation using statistical energy analysis , 12.4.1 Generation and propagation of tire/road noise
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-818409-7
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz