Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    (DE-627)1577137868
    Format: 4
    ISSN: 1520-5126
    Content: Membrane tension plays various critical roles in the cell. We here asked how fast and how far localized pulses of mechanical stress dynamically propagate through biological lipid bilayers. In both coarse-grained and all-atom molecular dynamics simulations of a dipalmitoylphosphatidylcholine lipid bilayer, we observed nanometer-wide stress pulses, propagating very efficiently longitudinally at a velocity of approximately 1.4 ± 0.5 nm/ps (km/s), in close agreement with the expected speed of sound from experiments. Remarkably, the predicted characteristic attenuation time of the pulses was in the order of tens of picoseconds, implying longitudinal stress propagation over length scales up to several tens of nanometers before damping. Furthermore, the computed dispersion relation leading to such damping was consistent with proposed continuum viscoelastic models of propagation. We suggest this mode of stress propagation as a potential ultrafast mechanism of signaling that may quickly couple mechanosensitive elements in crowded biological membranes.
    Note: Published online 30 August 2017 , Gesehen am 02.07.2018
    In: American Chemical Society, Journal of the American Chemical Society, Washington, DC : ACS Publications, 1879, 139(2017), 39, Seite 13588-13591, 1520-5126
    In: volume:139
    In: year:2017
    In: number:39
    In: pages:13588-13591
    In: extent:4
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages