UID:
almafu_9959328881802883
Umfang:
1 online resource
ISBN:
9781118593370
,
1118593375
,
9781118593363
,
1118593367
,
9781118593233
,
1118593235
,
1118422546
,
9781118422540
,
9781322007595
,
1322007594
Inhalt:
"This book emphasizes the collaborative analysis of data that is used to collect increments of time or space. Written at a readily accessible level, but with the necessary theory in mind, the author uses frequency- and time-domain and trigonometric regression as themes throughout the book. The content includes modern topics such as wavelets, Fourier series, and Akaike's Information Criterion (AIC), which is not typical of current-day "classics." Applications to a variety of scientific fields are showcased. Exercise sets are well crafted with the express intent of supporting pedagogy through recognition and repetition. R subroutines are employed as the software and graphics tool of choice. Brevity is a key component to the retention of the subject matter. The book presumes knowledge of linear algebra, probability, data analysis, and basic computer programming"--
Inhalt:
"This book emphasizes the collaborative analysis of data that is used to collect increments of time or space. Written at a readily accessible level, but with the necessary theory in mind, the author uses frequency- and time-domain and trigonometric regression as themes throughout the book"--
Anmerkung:
R Basics --
,
Getting Started, --
,
Special R Conventions, --
,
Common Structures, --
,
Common Functions, --
,
Time Series Functions, --
,
Importing Data, --
,
Exercises, --
,
Review of Regression and More About R --
,
Goals of this Chapter, --
,
The Simple(ST) Regression Model, --
,
Ordinary Least Squares, --
,
Properties of OLS Estimates, --
,
Matrix Representation of the Problem, --
,
Simulating the Data from a Model and Estimating the Model Parameters in R, --
,
Simulating Data, --
,
Estimating the Model Parameters in R, --
,
Basic Inference for the Model, --
,
Residuals Analysis[2014]What Can Go Wrong, --
,
Matrix Manipulation in R, --
,
Introduction, --
,
OLS the Hard Way, --
,
Some Other Matrix Commands, --
,
Exercises, --
,
The Modeling Approach Taken in this Book and Some Examples of Typical Serially Correlated Data --
,
Signal and Noise, --
,
Time Series Data, --
,
Simple Regression in the Framework, --
,
Real Data and Simulated Data, --
,
The Diversity of Time Series Data, --
,
Getting Data Into R, --
,
Overview, --
,
The Diskette and the scan() and ts() Functions[2014]New York City Temperatures, --
,
The Diskette and the read.table() Function[2014]The Semmelweis Data, --
,
Cut and Paste Data to a Text Editor, --
,
Exercises, --
,
Some Comments on Assumptions --
,
Introduction, --
,
The Normality Assumption, --
,
Right Skew, --
,
Left Skew, --
,
Heavy Tails, --
,
Equal Variance, --
,
Two-Sample t-Test, --
,
Regression, --
,
Independence, --
,
Power of Logarithmic Transformations Illustrated, --
,
Summary, --
,
Exercises, --
,
The Autocorrelation Function And AR(1), AR(2) Models --
,
Standard Models[2014]What are the Alternatives to White Noise?, --
,
Autocovariance and Autocorrelation, --
,
Stationarity, --
,
A Note About Conditions, --
,
Properties of Autocovariance, --
,
White Noise, --
,
Estimation of the Autocovariance and Autocorrelation, --
,
The acf() Function in R, --
,
Background, --
,
The Basic Code for Estimating the Autocovariance, --
,
The First Alternative to White Noise: Autoregressive Errors[2014]AR(1), AR(2), --
,
Definition of the AR(1) and AR(2) Models, --
,
Some Preliminary Facts, --
,
The AR(1) Model Autocorrelation and Autocovariance, --
,
Using Correlation and Scatterplots to Illustrate the AR(1) Model, --
,
The AR(2) Model Autocorrelation and Autocovariance, --
,
Simulating Data for AR(m) Models, --
,
Examples of Stable and Unstable AR(1) Models, --
,
Examples of Stable and Unstable AR(2) Models, --
,
Exercises, --
,
The Moving Average Models MA(1) And MA(2) --
,
The Moving Average Model, --
,
The Autocorrelation for MA(1) Models, --
,
A Duality Between MA(l) And AR(m) Models, --
,
The Autocorrelation for MA(2) Models, --
,
Simulated Examples of the MA(1) Model, --
,
Simulated Examples of the MA(2) Model, --
,
AR(m) and MA(l) model acf() Plots, --
,
Exercises, --
,
Review of Transcendental Functions and Complex Numbers --
,
Background, --
,
Complex Arithmetic, --
,
The Number i, --
,
Complex Conjugates, --
,
The Magnitude of a Complex Number, --
,
Some Important Series, --
,
The Geometric and Some Transcendental Series, --
,
A Rationale for Euler's Formula, --
,
Useful Facts About Periodic Transcendental Functions, --
,
Exercises, --
,
The Power Spectrum and the Periodogram --
,
Introduction, --
,
A Definition and a Simplified Form for p(f), --
,
Inverting p(f) to Recover the Ck Values, --
,
The Power Spectrum for Some Familiar Models, --
,
White Noise, --
,
The Spectrum for AR(1) Models, --
,
The Spectrum for AR(2) Models, --
,
The Periodogram, a Closer Look, --
,
Why is the Periodogram Useful?, --
,
Some Naive Code for a Periodogram, --
,
An Example[2014]The Sunspot Data, --
,
The Function spec.pgram() in R, --
,
Exercises, --
,
Smoothers, The Bias-Variance Tradeoff, and the Smoothed Periodogram --
,
Why is Smoothing Required?, --
,
Smoothing, Bias, and Variance, --
,
Smoothers Used in R, --
,
The R Function lowess(), --
,
The R Function smooth.spline(), --
,
Kernel Smoothers in spec.pgram(), --
,
Smoothing the Periodogram for a Series With a Known and Unknown Period, --
,
Period Known, --
,
Period Unknown, --
,
Summary, --
,
Exercises, --
,
A Regression Model for Periodic Data --
,
The Model,
,
An Example: The NYC Temperature Data, --
,
Fitting a Periodic Function, --
,
An Outlier, --
,
Refitting the Model with the Outlier Corrected, --
,
Complications 1: CO2 Data, --
,
Complications 2: Sunspot Numbers, --
,
Complications 3: Accidental Deaths, --
,
Summary, --
,
Exercises, --
,
Model Selection and Cross-Validation --
,
Background, --
,
Hypothesis Tests in Simple Regression, --
,
A More General Setting for Likelihood Ratio Tests, --
,
A Subtlety Different Situation, --
,
Information Criteria, --
,
Cross-validation (Data Splitting): NYC Temperatures, --
,
Explained Variation, R2, --
,
Data Splitting, --
,
Leave-One-Out Cross-Validation, --
,
AIC as Leave-One-Out Cross-Validation, --
,
Summary, --
,
Exercises, --
,
Fitting Fourier series --
,
Introduction: More Complex Periodic Models, --
,
More Complex Periodic Behavior: Accidental Deaths, --
,
Fourier Series Structure, --
,
R Code for Fitting Large Fourier Series, --
,
Model Selection with AIC, --
,
Model Selection with Likelihood Ratio Tests, --
,
Data Splitting, --
,
Accidental Deaths[2014]Some Comment on Periodic Data, --
,
The Boise River Flow data, --
,
The Data, --
,
Model Selection with AIC, --
,
Data Splitting, --
,
The Residuals, --
,
Where Do We Go from Here?, --
,
Exercises, --
,
Adjusting for AR(1) Correlation in Complex Models --
,
Introduction, --
,
The Two-Sample t-Test[2014]UNCUT and Patch-Cut Forest, --
,
The Sleuth Data and the Question of Interest, --
,
A Simple Adjustment for t-Tests When the Residuals Are AR(1), --
,
A Simulation Example, --
,
Analysis of the Sleuth Data, --
,
The Second Sleuth Case[2014]Global Warming, A Simple Regression, --
,
The Data and the Question, --
,
Filtering to Produce (Quasi- )Independent Observations, --
,
Simulated Example[2014]Regression, --
,
Analysis of the Regression Case, --
,
The Filtering Approach for the Logging Case, --
,
A Few Comments on Filtering, --
,
The Semmelweis Intervention, --
,
The Data, --
,
Why Serial Correlation?, --
,
How This Data Differs from the Patch/Uncut Case, --
,
Filtered Analysis, --
,
Transformations and Inference, --
,
The NYC Temperatures (Adjusted), --
,
The Data and Prediction Intervals, --
,
The AR(1) Prediction Model, --
,
A Simulation to Evaluate These Formulas, --
,
Application to NYC Data, --
,
The Boise River Flow Data: Model Selection With Filtering, --
,
The Revised Model Selection Problem, --
,
Comments on R2 and R2pred' --
,
Model Selection After Filtering with a Matrix, --
,
Implications of AR(1) Adjustments and the "Skip" Method, --
,
Adjustments for AR(1) Autocorrelation, --
,
Impact of Serial Correlation on p-Values, --
,
The "skip" Method, --
,
Summary, --
,
Exercises, --
,
The Backshift Operator, the Impulse Response Function, and General ARMA Models --
,
The General ARMA Model, --
,
The Mathematical Formulation, --
,
The arima.sim() Function in R Revisited, --
,
Examples of ARMA(m, l) Models, --
,
The Backshift (Shift, Lag) Operator, --
,
Definition of B, --
,
The Stationary Conditions for a General AR(m) Model, --
,
ARMA(m, l) Models and the Backshift Operator, --
,
More Examples of ARMA(m, l) Models, --
,
The Impulse Response Operator[2014]Intuition, --
,
Impulse Response Operator, g(B)[2014]Computation, --
,
Definition of g(B), --
,
Computing the Coefficients, --
,
Plotting an Impulse Response Function, --
,
Interpretation and Utility of the Impulse Response Function, --
,
Exercises, --
,
The Yule[2014]Walker Equations and the Partial Autocorrelation Function --
,
Background, --
,
Autocovariance of an ARMA(m, /) Model, --
,
A Preliminary Result, --
,
The Autocovariance Function for ARMA(m, /) Models, --
,
AR(m) and the Yule[2014]Walker Equations, --
,
The Equations, --
,
The R Function aryw() with an AR(3) Example, --
,
Information Criteria-Based Model Selection Using aryw(), --
,
The Partial Autocorrelation Plot, --
,
A Sequence of Hypothesis Tests, --
,
The pacf() Function[2014]Hypothesis Tests Presented in a Plot, --
,
The Spectrum For Arma Processes, --
,
Summary, --
,
Exercises, --
,
Modeling Philosophy and Complete Examples --
,
Modeling Overview, --
,
The Algorithm,
,
The Underlying Assumption, --
,
An Example Using an AR(m) Filter to Model MA(3), --
,
Generalizing the "Skip" Method, --
,
A Complex Periodic Model[2014]Monthly River Flows, Fumas 1931-1978, --
,
The Data, --
,
A Saturated Model, --
,
Building an AR(m) Filtering Matrix, --
,
Model Selection, --
,
Predictions and Prediction Intervals for an AR(3) Model, --
,
Data Splitting, --
,
Model Selection Based on a Validation Set, --
,
A Modeling Example[2014]Trend and Periodicity: CO2 Levels at Mauna Lau, --
,
The Saturated Model and Filter, --
,
Model Selection, --
,
How Well Does the Model Fit the Data?, --
,
Modeling Periodicity with a Possible Intervention[2014]Two Examples, --
,
The General Structure, --
,
Directory Assistance, --
,
Ozone Levels in Los Angeles, --
,
Interpretation and Utility of the Impulse Response Function, --
,
Exercises, --
,
The Yule[2014]Walker Equations and the Partial Autocorrelation Function --
,
Background, --
,
Autocovariance of an ARMA(m, l) Model, --
,
A Preliminary Result, --
,
The Autocovariance Function for ARMA(m, /) Models, --
,
AR(m) and the Yule[2014]Walker Equations, --
,
The Equations, --
,
The R Function ar.yw() with an AR(3) Example, --
,
Information Criteria-Based Model Selection Using ar.yw(), --
,
The Partial Autocorrelation Plot, --
,
A Sequence of Hypothesis Tests, --
,
The pacf() Function[2014]Hypothesis Tests Presented in a Plot, --
,
The Spectrum For Arma Processes, --
,
Summary, --
,
Exercises, --
,
Modeling Philosophy and Complete Examples --
,
Modeling Overview, --
,
The Algorithm, --
,
The Underlying Assumption, --
,
An Example Using an AR(m) Filter to Model MA(3), --
,
Generalizing the "Skip" Method, --
,
A Complex Periodic Model[2014]Monthly River Flows, Fumas 1931-1978, --
,
The Data, --
,
A Saturated Model, --
,
Building an AR(m) Filtering Matrix, --
,
Model Selection, --
,
Predictions and Prediction Intervals for an AR(3) Model, --
,
Data Splitting, --
,
Model Selection Based on a Validation Set, --
,
A Modeling Example[2014]Trend and Periodicity: CO2 Levels at Mauna Lau, --
,
The Saturated Model and Filter, --
,
Model Selection, --
,
How Well Does the Model Fit the Data?, --
,
Modeling Periodicity with a Possible Intervention[2014]Two Examples, --
,
The General Structure, --
,
Directory Assistance, --
,
Ozone Levels in Los Angeles, --
,
Periodic Models: Monthly, Weekly, and Daily Averages, --
,
Summary, --
,
Exercises, --
,
Wolf's Sunspot Number Data --
,
Background, --
,
Unknown Period -〉 Nonlinear Model, --
,
The Function nls() in R, --
,
Determining the Period, --
,
Instability in the Mean, Amplitude, and Period, --
,
Data Splitting for Prediction, --
,
The Approach, --
,
Step 1-Fitting One Step Ahead, --
,
The AR Correction, --
,
Putting it All Together, --
,
Model Selection, --
,
Predictions Two Steps Ahead, --
,
Summary, --
,
Exercises, --
,
An Analysis of Some Prostate and Breast Cancer Data --
,
Background, --
,
The First Data Set, --
,
The Second Data Set, --
,
Background and Questions, --
,
Outline of the Statistical Analysis, --
,
Looking at the Data, --
,
Examining the Residuals for AR(m) Structure, --
,
Regression Analysis with Filtered Data, --
,
Exercises, --
,
Christopher Tennant/Ben Crosby Watershed Data --
,
Background and Question, --
,
Looking at the Data and Fitting Fourier Series, --
,
The Structure of the Data, --
,
Fourier Series Fits to the Data, --
,
Connecting Patterns in Data to Physical Processes, --
,
Averaging Data, --
,
Results, --
,
Exercises, --
,
Vostok Ice Core Data --
,
Source of the Data, --
,
Background, --
,
Alignment, --
,
Need for Alignment, and Possible Issues Resulting from Alignment, --
,
Is the Pattern in the Temperature Data Maintained?, --
,
Are the Dates Closely Matched?, --
,
Are the Times Equally Spaced?, --
,
A Naïve Analysis, --
,
A Saturated Model, --
,
Model Selection, --
,
The Association Between CO2 and Temperature Change, --
,
A Related Simulation, --
,
The Model and the Question of Interest, --
,
Simulation Code in R, --
,
A Model Using all of the Simulated Data, --
,
A Model Using a Sample of 283 from the Simulated Data, --
,
An AR(1) Model for Irregular Spacing, --
,
Motivation, --
,
Method, --
,
Results, --
,
Sensitivity Analysis, --
,
A Final Analysis, Well Not Quite, --
,
Summary, --
,
Exercises, --
,
Overview, --
,
Loading a Time Series in Datamarket, --
,
Respecting Datamarket Licensing Agreements, --
,
Introduction, --
,
PRESS, --
,
Connection to Akaike's Result, --
,
Normalization and R2, --
,
An example, --
,
Conclusion and Further Comments, --
,
Introduction, --
,
Newton's Method for One-Dimensional Nonlinear Optimization, --
,
A Sequence of Directions, Step Sizes, and a Stopping Rule, --
,
What Could Go Wrong?, --
,
Generalizing the Optimization Problem, --
,
What Could Go Wrong[2014]Revisited, --
,
What Can be Done?
Weitere Ausg.:
Print version: Derryberry, DeWayne R. Basic data analysis for time series with R. Hoboken, New Jersey : John Wiley & Sons, Inc., [2014] ISBN 9781118422540
Sprache:
Englisch
Schlagwort(e):
Electronic books.
;
Electronic books.
;
Electronic books.
URL:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118593233
URL:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118593233
URL:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118593233