UID:
almafu_9959329084102883
Umfang:
1 online resource (xviii, 311 pages) :
,
illustrations
ISBN:
9781119995678
,
1119995671
,
9781119995685
,
111999568X
Inhalt:
This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subje.
Anmerkung:
The EM algorithm, variational approximations and expectation propagation for mixtures /
,
Preamble --
,
The EM algorithm --
,
Introduction to the algorithm --
,
The E-step and the M-step for the mixing weights --
,
The M-step for mixtures of univariate Gaussian distributions --
,
M-step for mixtures of regular exponential family distributions formulated in terms of the natural parameters --
,
Application to other mixtures --
,
EM as a double expectation --
,
Variational approximations --
,
Preamble --
,
Introduction to variational approximations --
,
Application of variational Bayes to mixture problems --
,
Application to other mixture problems --
,
Recursive variational approximations --
,
Asymptotic results --
,
Expectation-propagation --
,
Introduction --
,
Overview of the recursive approach to be adopted.
,
Finite Gaussian mixtures with an unknown mean parameter --
,
Mixture of two known distributions --
,
Discussion --
,
Acknowledgements --
,
References --
,
Online expectation maximisation /
,
Introduction --
,
Model and assumptions --
,
The EM algorithm and the limiting EM recursion --
,
The batch EM algorithm --
,
The limiting EM recursion --
,
Limitations of batch EM for long data records --
,
Online expectation maximisation --
,
The algorithm --
,
Convergence properties --
,
Application to finite mixtures --
,
Use for batch maximum-likelihood estimation --
,
Discussion --
,
References --
,
The limiting distribution of the EM test of the order of a finite mixture /
,
Introduction --
,
The method and theory of the EM test --
,
The definition of the EM test statistic --
,
The limiting distribution of the EM test statistic --
,
Proofs.
,
Discussion --
,
References --
,
Comparing Wald and likelihood regions applied to locally identifiable mixture models /
,
Introduction --
,
Background on likelihood confidence regions --
,
Likelihood regions --
,
Profile likelihood regions --
,
Alternative methods --
,
Background on simulation and visualisation of the likelihood regions --
,
Modal simulation method --
,
Illustrative example --
,
Comparison between the likelihood regions and the Wald regions --
,
Volume/volume error of the confidence regions --
,
Differences in univariate intervals via worst case analysis --
,
Illustrative example (revisited) --
,
Application to a finite mixture model --
,
Nonidentifiabilities and likelihood regions for the mixture parameters --
,
Mixture likelihood region simulation and visualisation --
,
Adequacy of using the Wald confidence region.
,
Data analysis --
,
Discussion --
,
References --
,
Mixture of experts modelling with social science applications /
,
Introduction --
,
Motivating examples --
,
Voting blocs --
,
Social and organisational structure --
,
Mixture models --
,
Mixture of experts models --
,
A mixture of experts model for ranked preference data --
,
Examining the clustering structure --
,
A mixture of experts latent position cluster model --
,
Discussion --
,
Acknowledgements --
,
References --
,
Modelling conditional densities using finite smooth mixtures /
,
Introduction --
,
The model and prior --
,
Smooth mixtures --
,
The component models --
,
The prior --
,
Inference methodology --
,
The general MCMC scheme --
,
Updating & beta; and I using variable-dimension finite-step Newton proposals --
,
Model comparison --
,
Applications --
,
A small simulation study.
,
LIDAR data --
,
Electricity expenditure data --
,
Conclusions --
,
Acknowledgements --
,
Appendix: Implementation details for the gamma and log-normal models --
,
References --
,
Nonparametric mixed membership modelling using the IBP compound Dirichlet process /
,
Introduction --
,
Mixed membership models --
,
Latent Dirichlet allocation --
,
Nonparametric mixed membership models --
,
Motivation --
,
Decorrelating prevalence and proportion --
,
Indian buffet process --
,
The IBP compound Dirichlet process --
,
An application of the ICD: focused topic models --
,
Inference --
,
Related models --
,
Empirical studies --
,
Discussion --
,
References --
,
Discovering nonbinary hierarchical structures with Bayesian rose trees /
,
Introduction --
,
Prior work --
,
Rose trees, partitions and mixtures --
,
Avoiding needless cascades --
,
Cluster models.
,
Greedy construction of Bayesian rose tree mixtures --
,
Prediction --
,
Hyperparameter optimisation --
,
Bayesian hierarchical clustering, Dirichlet process models and product partition models --
,
Mixture models and product partition models --
,
PCluster and Bayesian hierarchical clustering --
,
Results --
,
Optimality of tree structure --
,
Hierarchy likelihoods --
,
Partially observed data --
,
Psychological hierarchies --
,
Hierarchies of Gaussian process experts --
,
Discussion --
,
References --
,
Mixtures of factor analysers for the analysis of high-dimensional data /
,
Introduction --
,
Single-factor analysis model --
,
Mixtures of factor analysers --
,
Mixtures of common factor analysers (MCFA) --
,
Some related approaches --
,
Fitting of factor-analytic models --
,
Choice of the number of factors q --
,
Example --
,
Low-dimensional plots via MCFA approach.
,
Multivariate t-factor analysers --
,
Discussion --
,
Appendix --
,
References --
,
Dealing with label switching under model uncertainty /
,
Introduction --
,
Labelling through clustering in the point-process representation --
,
The point-process representation of a finite mixture model --
,
Identification through clustering in the point-process representation --
,
Identifying mixtures when the number of components is unknown --
,
The role of Dirichlet priors in overfitting mixtures --
,
The meaning of K for overfitting mixtures --
,
The point-process representation of overfitting mixtures --
,
Examples --
,
Overfitting heterogeneity of component-specific parameters --
,
Overfitting heterogeneity --
,
Using shrinkage priors on the component-specific location parameters --
,
Concluding remarks --
,
References --
,
Exact Bayesian analysis of mixtures /
,
Introduction --
,
Formal derivation of the posterior distribution --
,
Locally conjugate priors --
,
True posterior distributions --
,
Poisson mixture --
,
Multinomial mixtures --
,
Normal mixtures --
,
References --
,
Manifold MCMC for mixtures /
,
Introduction --
,
Markov chain Monte Carlo Methods --
,
Metropolis-Hastings --
,
Gibbs sampling --
,
Manifold Metropolis adjusted Langevin algorithm --
,
Manifold Hamiltonian Monte Carlo --
,
Finite Gaussian mixture models --
,
Gibbs sampler for mixtures of univariate Gaussians --
,
Manifold MCMC for mixtures of univariate Gaussians --
,
Metric tensor --
,
An illustrative example --
,
Experiments --
,
Discussion --
,
Acknowledgements --
,
Appendix --
,
References --
,
How many components in a finite mixture? /
,
Introduction --
,
The galaxy data --
,
The normal mixture model.
,
Bayesian analyses --
,
Escobar and West --
,
Phillips and Smith --
,
Roeder and Wasserman --
,
Richardson and Green --
,
Stephens --
,
Posterior distributions for K (for flat prior) --
,
Conclusions from the Bayesian analyses --
,
Posterior distributions of the model deviances --
,
Asymptotic distributions --
,
Posterior deviances for the galaxy data --
,
Conclusions --
,
References --
,
Bayesian mixture models: a blood-free dissection of a sheep /
,
Introduction --
,
Mixture models --
,
Hierarchical normal mixture --
,
Altering dimensions of the mixture model --
,
Bayesian mixture model incorporating spatial information --
,
Results --
,
Volume calculation --
,
Discussion --
,
References.
Weitere Ausg.:
Print version: Mixtures. Hoboken, N.J. : Wiley, 2011 ISBN 9781119993896
Sprache:
Englisch
Fachgebiete:
Mathematik
Schlagwort(e):
Electronic books.
;
Electronic books.
;
Electronic books.
URL:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119995678
URL:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119995678
URL:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119995678