UID:
almafu_9960073783502883
Umfang:
1 online resource (262 pages) :
,
illustrations.
ISBN:
9780081012901
,
008101290X
Serie:
Woodhead Publishing Series in Biomaterials
Anmerkung:
Front Cover -- Metallic Foam Bone -- Related titles -- Metallic Foam BoneWoodhead Publishing Series in BiomaterialsProcessing, Modification and Characterization and Properties -- Copyright -- Contents -- List of contributors -- Preface -- 1 - Metallic scaffolds manufactured by selective laser melting for biomedical applications -- 1.1 Introduction -- 1.2 Advanced manufacturing techniques for tissue engineering scaffolds and implants -- 1.2.1 Selective laser sintering -- 1.2.1.1 Previous work on tissue engineering scaffolds and implants using selective laser sintering -- 1.2.1.2 Advantages, challenges, and key materials processed by selective laser sintering -- 1.2.2 Selective laser melting -- 1.2.2.1 Required characteristics of a tissue engineering scaffold -- 1.2.2.2 Effect of porous structure on the osteoconductivity of scaffolds -- 1.2.2.3 Role of critical process parameters of selective laser melting -- 1.2.2.4 Previous work on tissue engineering scaffolds and implants using selective laser melting -- 1.2.2.5 Advantages, challenges, and key materials processed by selective laser melting -- 1.3 Future research directions -- 1.4 Conclusions -- Acknowledgments -- References -- 2 - Production methods and characterization of porous Mg and Mg alloys for biomedical applications -- 2.1 Introduction -- 2.2 Production methods for porous Mg and some of its alloys -- 2.2.1 Melt processing methods -- 2.2.1.1 Melt processing method with a blowing agent -- 2.2.1.2 Melt infiltration in a preform -- 2.2.1.3 Melt/gas eutectic solidification process -- 2.2.1.4 Melt vacuum solidification foaming: vacuum foaming technique -- 2.2.2 Powder metallurgy -- 2.2.2.1 Blowing agent-based powder metallurgy -- 2.2.2.2 Space holder-based powder metallurgy -- 2.2.3 Other processes -- 2.2.3.1 Forming and blowing agent-based process.
,
2.2.3.2 Pulse electric current sintering process -- 2.2.3.3 Fiber sintering process -- 2.2.3.4 Fiber deposition hot pressing technology -- 2.2.3.5 Mechanical perforation technique -- 2.3 Discussion -- 2.3.1 Effect of alloy composition -- 2.3.2 Effect of porosity -- 2.3.3 Effect of pore size -- 2.3.4 Effect of pore type -- 2.3.5 Effect of pore shape (pore morphology) -- 2.4 Challenges and directions of future research -- References -- 3 - Metal scaffolds processed by electron beam melting for biomedical applications -- 3.1 Introduction -- 3.2 Electron beam melting used in biomedical manufacturing -- 3.2.1 Device description -- 3.2.2 Electron beam and powder interaction -- 3.2.3 Process parameters -- 3.2.3.1 Speed function index -- 3.2.3.2 Focus offset -- 3.2.3.3 Line offset or overlap -- 3.2.3.4 Beam current -- 3.2.3.5 Preheating temperature -- 3.2.3.6 Layer thickness -- 3.2.3.7 Scanning strategy -- 3.2.3.8 Powder specification -- 3.2.4 Advantages of electron beam melting technology -- 3.2.5 Disadvantages of electron beam melting technology -- 3.2.5.1 Residual stress -- 3.2.5.2 Balling -- 3.2.5.3 Delamination and cracking -- 3.2.5.4 Porosity -- 3.2.5.5 Stair-stepping effect -- 3.2.5.6 Rough surface and accuracy -- 3.3 Achievements in the design and fabrication of biocompatible scaffolds -- 3.4 Metallurgy and mechanical properties of electron beam melting-manufactured parts -- 3.5 Overview of challenges and future research directions -- Acknowledgments -- References -- 4 - Titanium foam for bone tissue engineering -- 4.1 Introduction -- 4.2 Materials -- 4.2.1 Titanium foam prepared by the powder sintering method -- 4.2.1.1 Method -- 4.2.1.2 Structure -- 4.2.2 Titanium foam prepared by the selective laser melting method -- 4.2.2.1 Method -- 4.2.2.2 Structure -- 4.3 Mechanical properties of titanium foams.
,
4.3.1 Titanium foam prepared by the powder sintering method -- 4.3.2 Titanium foam prepared by the selective laser melting method -- 4.4 Biological properties of titanium foam -- 4.4.1 Osteoconductivity -- 4.4.2 Osteoinductivity -- 4.5 Applications of titanium foam in orthopedics -- 4.5.1 Device design and clinical trials for lumbar interbody fusion -- 4.5.2 Device design and clinical trials for anterior cervical discectomy and fusion -- 4.6 Future trends -- References -- 5 - Titanium foam scaffolds for dental applications -- 5.1 Introduction -- 5.2 Dental implants and materials -- 5.2.1 Titanium and its alloys -- 5.2.2 Nickel-titanium shape memory alloys -- 5.3 Properties and characteristics of titanium foam scaffolds -- 5.3.1 Implant design -- 5.3.2 Biocompatibility -- 5.3.3 Mechanical properties -- 5.3.4 Pore characteristics -- 5.4 Osseointegration in titanium foam scaffolds -- 5.5 Dental implants with porous titanium coating -- 5.6 Dental applications of titanium scaffolds: advancement and challenges -- 5.7 Conclusion and future trends -- Acknowledgments -- References -- 6 - Chemical surface modification of a titanium scaffold -- 6.1 Introduction -- 6.2 Methods of chemical and heat treatments -- 6.2.1 NaOH and heat treatments -- 6.2.2 NaOH, CaCl2, heat, and water treatments -- 6.2.3 H2SO4/HCl and heat treatments -- 6.2.4 Various chemical and heat treatments -- 6.3 Properties of titanium scaffolds subjected to chemical and heat treatments -- 6.3.1 Apatite-forming ability -- 6.3.2 Bone-bonding property -- 6.3.3 Osteoconductivity and osteoinductivity -- 6.4 Clinical application of titanium scaffolds subjected to chemical and heat treatments -- 6.5 Future trends -- References -- 7 - Nanotopography and surface chemistry of TiO2-ZrO2-ZrTiO4 nanotubular surfaces and the influence on their bioactivity and cell responses -- 7.1 Introduction.
,
7.2 Experiment -- 7.3 Results and discussion -- 7.3.1 Anodization dynamics for the fabrication of TiO2-ZrO2-ZrTiO4 nanotubes -- 7.3.2 Physical and chemical characteristics of TiO2-ZrO2-ZrTiO4 nanotubular layers -- 7.3.3 Bioactivity of TiO2-ZrO2-ZrTiO4 and TiO2 nanotubes and cell adhesion and spreading on the nanotubular surfaces -- 7.4 Conclusions -- Acknowledgments -- References -- 8 - Antibacterial design for metal implants -- 8.1 Introduction -- 8.2 Implant-associated bacterial infections -- 8.3 Research and development of antibacterial metals for medical applications -- 8.3.1 Design of antibacterial metals -- 8.3.2 Antibacterial performance of antibacterial metals -- 8.3.2.1 Evaluation of antibacterial properties -- 8.3.2.2 Antibacterial stainless steels -- 8.3.2.3 Antibacterial titanium alloys -- 8.3.2.4 Antibacterial cobalt-based alloys -- 8.3.2.5 Antibacterial performance of biodegradable magnesium-based metals -- 8.4 Future prospects -- References -- 9 - The bioactivity and bone cell attachment of nanotubular layers anodized in aqueous and nonaqueous electrolytes -- 9.1 Introduction -- 9.2 Experimental -- 9.2.1 Preparation of the substrate and surface characterization -- 9.2.2 Nanohardness and elasticity measurements -- 9.2.3 Assessing hydroxyapatite mineralization and bone cell attachment to nanotubes fabricated in aqueous and nonaqueous electrolytes -- 9.3 Results and discussion -- 9.3.1 Formation of TiO2-ZrO2-ZrTiO4 nanotubes in aqueous and nonaqueous electrolyte -- 9.3.2 Surface topography of TiO2-ZrO2-ZrTiO4 nanotubes fabricated using aqueous and nonaqueous electrolyte -- 9.3.3 Mechanical properties of TiO2-ZrO2-ZrTiO4 nanotubes fabricated in aqueous and nonaqueous electrolyte -- 9.3.4 Hydroxyapatite mineralization and bone cell attachment of TiO2-ZrO2-ZrTiO4 nanotubes fabricated in aqueous and nonaqueous electrolyte -- 9.4 Conclusions.
,
Acknowledgments -- References -- Index -- A -- B -- C -- D -- E -- F -- H -- I -- J -- L -- M -- N -- O -- P -- R -- S -- T -- V -- W -- Back Cover.
Weitere Ausg.:
ISBN 9780081012895
Weitere Ausg.:
ISBN 0081012896
Sprache:
Englisch