UID:
almafu_9961089677302883
Umfang:
1 online resource (884 pages) :
,
illustrations
Ausgabe:
Fourth edition.
ISBN:
9780081022108
,
0081022107
,
9780081022092
,
0081022093
Anmerkung:
Front Cover -- Advanced Mechanics of Composite Materials and Structures -- Copyright Page -- Contents -- Preface -- Introduction -- 1 Mechanics of a Unidirectional Ply -- 1.1 Ply Architecture -- 1.2 Fiber-Matrix Interaction -- 1.2.1 Theoretical and Actual Strength -- 1.2.2 Statistical Aspects of Fiber Strength -- 1.2.3 Stress Diffusion in Fibers Interacting Through the Matrix -- 1.2.4 Fracture Toughness -- 1.3 Micromechanics of a Ply -- 1.4 Mechanical Properties of a Ply Under Tension, Shear, and Compression -- 1.4.1 Longitudinal Tension -- 1.4.2 Transverse Tension -- 1.4.3 In-Plane Shear -- 1.4.4 Longitudinal Compression -- 1.4.5 Transverse Compression -- 1.5 Interlaminar Stiffness and Strength -- 1.6 Hybrid Composites -- 1.7 Composites With High Fiber Fraction -- 1.8 Limitations of the Phenomenological Homogeneous Model of a Ply -- References -- 2 Mechanics of a Composite Layer -- 2.1 Isotropic Layer -- 2.1.1 Linear Elastic Model -- 2.1.2 Nonlinear Models -- 2.2 Unidirectional Orthotropic Layer -- 2.2.1 Linear Elastic Model -- 2.2.2 Nonlinear Models -- 2.3 Unidirectional Anisotropic Layer -- 2.3.1 Linear Elastic Model -- 2.3.2 Nonlinear Models -- 2.4 Orthogonally Reinforced Orthotropic Layer -- 2.4.1 Linear Elastic Model -- 2.4.2 Nonlinear Models -- 2.4.3 Composites With Controlled Cracks -- 2.4.4 Two-Matrix Composites -- 2.4.5 Two-Matrix Composite Made by Three-Dimensional Printing -- 2.5 Angle-Ply Orthotropic Layer -- 2.5.1 Linear Elastic Model -- 2.5.2 Nonlinear Models -- 2.5.3 Free-Edge Effects -- 2.6 Layer Made by Angle-Ply Circumferential Winding -- 2.7 Fabric Layers -- 2.8 Spatially Reinforced Layers and Bulk Materials -- References -- 3 Mechanics of Laminates -- 3.1 Stiffness Coefficients of a Nonhomogeneous Anisotropic Layer -- 3.2 Stiffness Coefficients of a Homogeneous Layer -- 3.3 Stiffness Coefficients of a Laminate.
,
3.4 Symmetric Laminates -- 3.5 Engineering Stiffness Coefficients of Orthotropic Laminates -- 3.6 Quasi-Homogeneous Laminates -- 3.6.1 Laminate Composed of Identical Homogeneous Layers -- 3.6.2 Laminate Composed of Inhomogeneous Orthotropic Layers -- 3.6.3 Laminate Composed of Angle-Ply Layers -- 3.6.4 Fiber Metal Laminates -- 3.7 Quasi-Isotropic Laminates in the Plane Stress State -- 3.8 Antisymmetric Laminates -- 3.9 Sandwich Structures -- 3.10 Coordinate of the Reference Plane -- 3.11 Stresses in Laminates -- References -- 4 Failure Criteria and Strength of Laminates -- 4.1 Failure Criteria for an Elementary Composite Layer or Ply -- 4.1.1 Maximum Stress and Strain Criteria -- 4.1.2 Approximation Strength Criteria -- 4.1.3 Tensor Strength Criteria -- 4.1.4 Interlaminar Strength -- 4.2 Practical Recommendations -- 4.3 Examples -- 4.4 Allowable Stresses for Laminates Consisting of Unidirectional Plies -- 4.5 Progressive Failure: General Approach to Modeling and Analysis -- 4.5.1 Constitutive Equations -- 4.5.2 Plastic Model -- 4.5.3 Damage Model -- 4.5.3.1 Damage Initiation and Propagation Criteria -- 4.5.3.2 Damage Evolution -- 4.5.4 Numerical Implementation -- 4.5.4.1 Integration Algorithm -- 4.5.4.2 Consistent Tangent Stiffness Matrix -- 4.5.4.3 Viscous Regularization -- 4.5.4.4 Computational Procedure -- 4.5.5 Numerical Analyses -- 4.5.5.1 Analysis of AS4/3501-6 Double-Notched Laminate -- 4.5.5.2 AS4/PEEK [±45°]2s Composite Laminate -- References -- 5 Environmental, Special Loading, and Manufacturing Effects -- 5.1 Temperature Effects -- 5.1.1 Thermal Conductivity -- 5.1.2 Thermoelasticity -- 5.2 Hygrothermal Effects and Aging -- 5.3 Time-dependent Loading Effects -- 5.3.1 Viscoelastisity -- 5.3.2 Durability -- 5.3.3 Cyclic Loading -- 5.3.4 Impact Loading -- 5.4 Manufacturing Effects -- 5.4.1 Porosity Effect -- 5.4.2 Tape Overlap Effect.
,
5.4.3 Warping and Bending of Laminates in Fabrication Process -- 5.4.4 Shrinkage Effects and Residual Strains -- References -- 6 Laminated Composite Beams and Columns -- 6.1 Basic Equations -- 6.2 Stiffness Coefficients -- 6.3 Bending of Laminated Beams -- 6.4 Nonlinear Bending -- 6.5 Buckling of Composite Columns -- 6.6 Free Vibrations of Composite Beams -- 6.7 Refined Theories of Beams and Plates -- 6.7.1 First-Order Theory -- 6.7.2 Higher-Order theories -- 6.7.3 Consistency Conditions -- 6.7.4 Theory of Elasticity Solution -- 6.7.5 Nonclassical Elasticity Solution -- 6.8 Laminated Beams -- References -- 7 Laminated Composite Plates -- 7.1 Equations of the Theory of Anisotropic Laminated Plates -- 7.2 Equations for the Orthotropic Plates with Symmetric Structure -- 7.3 Analysis of Plate Theory for Transversely Isotropic Plates -- 7.3.1 Classical Plate Theory -- 7.3.2 Theory of Shear Deformable Plates -- 7.3.2.1 Theory equations -- 7.3.2.2 Bending problem -- 7.3.2.3 Torsion problem -- 7.4 Bending of Orthotropic Symmetric Plates -- 7.4.1 Exact Solutions of Classical Plate Theory -- 7.4.1.1 Simply supported plates -- 7.4.1.2 Plates simply supported at opposite edges -- 7.4.1.3 Clamped plates -- 7.4.2 Approximate Solutions for Classical Plate Theory -- 7.4.3 Shear Deformable Orthotropic Symmetric Plates -- 7.5 Buckling of Orthotropic Symmetric Plates -- 7.5.1 Classical Plate Theory -- 7.5.2 Theory of Shear Deformable Plates -- 7.6 Postbuckling Behavior of Orthotropic Symmetric Plates Under Axial Compression -- 7.7 Generally Laminated Plates -- 7.7.1 Bending of Unsymmetric Plates -- 7.7.2 In-Plane Loading -- 7.7.3 Shear Deformable Unsymmetrically Laminated Plates -- 7.8 Optimal Design of Laminated Composite Plates -- 7.8.1 Optimal Fibrous Structures -- 7.8.2 Composite Laminates of Uniform Strength -- 7.8.3 Optimal Design of Laminated Plates.
,
7.8.3.1 Optimization under strength constraints -- 7.8.3.2 Optimization under strength and buckling constraints -- 7.9 Circular Composite Plates and Disks -- 7.9.1 Governing Equations -- 7.9.2 Plane Stress State of Symmetrically Laminated Plates -- 7.9.3 Optimal Fibrous Structure of a Spinning Disk -- 7.9.4 Bending of Plates with Symmetrically Laminated Structure -- 7.9.5 Plates with Nonsymmetrically Laminated Structure -- 7.9.6 Circular Plates Orthotropic in Cartesian Coordinates -- References -- 8 Equations of the Applied Theory of Thin-Walled Composite Structures -- 8.1 Geometry of the Structure -- 8.2 Strain-Displacement Equations -- 8.3 Constitutive Equations -- 8.4 Equilibrium Equations -- 8.5 Boundary Conditions -- 8.6 Classical Shell Theory -- 8.7 Engineering Theory -- 8.8 Membrane Theory -- 8.9 Nonlinear Theories -- 8.10 Buckling Equations -- 8.11 Equations of Dynamics -- References -- 9 Thin-Walled Composite Beams -- 9.1 Geometry of the Beam Cross-Section -- 9.2 Basic Equations -- 9.3 Assumptions of Composite Beam Theory -- 9.4 Free Bending and Torsion of Thin-Walled Beams With a Closed Cross-Sectional Contour -- 9.4.1 Axial Strain and Stress Resultant -- 9.4.2 Shear Strain and Stress Resultant -- 9.4.3 Stresses in the Plies of Composite Beams -- 9.4.4 Determination of Displacements -- 9.4.5 Warping Function -- 9.4.6 Beams With Circular and Rectangular Cross-Sections -- 9.4.7 Shear and Twist Center -- 9.4.8 Anisotropic Thin-Walled Beams -- 9.4.9 Beams Stiffened With Axial Ribs -- 9.4.10 Beams Loaded With Body and Surface Forces -- 9.4.11 Restrained Torsion and Bending of Beams With Closed Cross-Sectional Contours -- 9.5 Beams With Multicell Cross-Sectional Contours -- 9.6 Beams With Open Cross-Sectional Contours -- 9.6.1 Transverse Bending -- 9.6.2 Free Torsion of Beams With Open Cross-Sectional Contours.
,
9.6.3 Restrained Torsion of Beams With Open Cross-Sectional Contours -- References -- 10 Circular Cylindrical Shells -- 10.1 Governing Equations and Applied Shell Theories -- 10.2 Cylindrical Shells Whose Stress-Strain State Does Not Depend on the Axial Coordinate -- 10.2.1 Circular Rings -- 10.2.2 Infinitely Long Cylindrical Panel -- 10.3 Axisymmetric Deformation of Cylindrical Shells -- 10.3.1 Linear Theory of Shear Deformable Shells -- 10.3.2 Linear Classical Shell Theory -- 10.3.3 Nonlinear Classical Theory -- 10.3.4 Nonlinear Membrane Theory -- 10.3.5 Examples -- 10.3.6 Anisotropic Shells -- 10.4 General Loading Case -- 10.4.1 Classical Shell Theory -- 10.4.2 Engineering Shell Theory -- 10.4.3 Semimembrane Shell Theory -- 10.4.4 Membrane Shell Theory -- 10.4.5 Shear Deformable Shell Theory -- 10.5 Buckling of Cylindrical Shells Under Axial Compression -- 10.5.1 Column-Type Buckling -- 10.5.2 Axisymmetric Buckling Mode -- 10.5.3 Nonsymmetric Buckling Mode -- 10.6 Buckling of Cylindrical Shells Under External Pressure -- 10.6.1 Simply Supported Shells -- 10.6.2 Infinitely Long Shells -- 10.6.3 Hydrostatic Pressure -- 10.7 Anisogrid Composite Lattice Cylindrical Shells -- 10.7.1 Fabrication and Applications of Anisogrid Cylindrical Shells -- 10.7.2 Analysis -- 10.7.3 Design -- References -- 11 Shells of Revolution -- 11.1 Basic Equations -- 11.2 Governing Equations of the Linear Theory -- 11.3 Linear Membrane Theory -- 11.4 Linear Boundary-Layer Theory -- 11.5 Nonlinear Theory -- 11.5.1 General Equations -- 11.5.2 Nonlinear Boundary-Layer Theory -- 11.5.3 Nonlinear Membrane Boundary-Layer Theory -- 11.6 Comparison of Boundary-Layer Theories -- References -- 12 Composite Pressure Vessels -- 12.1 Basic Equations -- 12.2 Shells Wound by Unidirectional Composite Tapes -- 12.2.1 Shells Consisting of ±φ Symmetric Monotropic Layers.
,
12.2.2 Shells Consisting of a System of ±φi(r) Layers.
Sprache:
Englisch