Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almafu_BV043136526
    Format: 1 Online-Ressource (xvi, 715 Seiten).
    ISBN: 978-3-11-020321-9
    Series Statement: De Gruyter studies in mathematics 35
    Note: Includes bibliographical references (pages 669-694) and index. - Compact convex sets -- Choquet theory of function spaces -- Affine functions on compact convex sets -- Perfect classes of functions and representation of affine functions -- Simplicial function spaces -- Choquet theory of function cones -- Choquet-like sets -- Topologies on boundaries -- Deeper results on function spaces and compact convex sets -- Continuous and measurable selectors -- Constructions of function spaces -- Function spaces in potential theory and the Dirichlet problem -- Applications. - This ambitious and substantial monograph, written by prominent experts in the field, presents the state of the art of convexity, with an emphasis on the interplay between convex analysis and potential theory; more particularly, between Choquet theory and the Dirichlet problem. The book is unique and self-contained, and it covers a wide range of applications which will appeal to many readers
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-11-020320-2
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-11-020320-2
    Language: English
    Subjects: Mathematics
    RVK:
    Keywords: Integraldarstellung ; Konvexe Menge ; Banach-Raum ; Potenzialtheorie ; Choquet-Theorie
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    URL: Cover
    Author information: Lukeš, Jaroslav 1940-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages