Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    New York, NY :Springer New York :
    UID:
    almahu_9947362860302882
    Format: XX, 782 p. , online resource.
    ISBN: 9781461206637
    Series Statement: Applied Mathematical Sciences, 124
    Content: This book deals with optimality conditions, algorithms, and discretization tech­ niques for nonlinear programming, semi-infinite optimization, and optimal con­ trol problems. The unifying thread in the presentation consists of an abstract theory, within which optimality conditions are expressed in the form of zeros of optimality junctions, algorithms are characterized by point-to-set iteration maps, and all the numerical approximations required in the solution of semi-infinite optimization and optimal control problems are treated within the context of con­ sistent approximations and algorithm implementation techniques. Traditionally, necessary optimality conditions for optimization problems are presented in Lagrange, F. John, or Karush-Kuhn-Tucker multiplier forms, with gradients used for smooth problems and subgradients for nonsmooth prob­ lems. We present these classical optimality conditions and show that they are satisfied at a point if and only if this point is a zero of an upper semicontinuous optimality junction. The use of optimality functions has several advantages. First, optimality functions can be used in an abstract study of optimization algo­ rithms. Second, many optimization algorithms can be shown to use search directions that are obtained in evaluating optimality functions, thus establishing a clear relationship between optimality conditions and algorithms. Third, estab­ lishing optimality conditions for highly complex problems, such as optimal con­ trol problems with control and trajectory constraints, is much easier in terms of optimality functions than in the classical manner. In addition, the relationship between optimality conditions for finite-dimensional problems and semi-infinite optimization and optimal control problems becomes transparent.
    Note: Contents: Unconstrained Optimization -- Optimality Conditions -- Algorithm Models and Convergence Conditions I -- Gradient Methods -- Newton's Method -- Methods of Conjugate Directions -- Quasi-Newton Methods -- One Dimensional Optimization -- Newton's Method for Equations and Inequalities -- Finite Minimax and Constrained Optimization -- Optimality Conditions for Minimax -- Optimality Conditions for Constrained Optimization -- Algorithm Models and Convergence Conditions II -- First-Order Minimax Algorithms -- Newton's Method for Minimax Problems -- Phase I. Phase II Methods of Centers -- Penalty Function Algorithms -- An Augmented Lagrangian Method.
    In: Springer eBooks
    Additional Edition: Printed edition: ISBN 9781461268611
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages