Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_9947362972502882
    Umfang: XII, 204 p. , online resource.
    ISBN: 9781461255031
    Serie: Lecture Notes in Statistics, 16
    Inhalt: During the last decades. the evolution of theoretical statistics has been marked by a considerable expansion of the number of mathematically and computationaly trac­ table models. Faced with this inflation. applied statisticians feel more and more un­ comfortable: they are often hesitant about their traditional (typically parametric) assumptions. such as normal and i. i. d . • ARMA forms for time-series. etc . • but are at the same time afraid of venturing into the jungle of less familiar models. The prob­ lem of the justification for taking up one model rather than another one is thus a crucial one. and can take different forms. (a) ~~~£ifi~~~iQ~ : Do observations suggest the use of a different model from the one initially proposed (e. g. one which takes account of outliers). or do they render plau­ sible a choice from among different proposed models (e. g. fixing or not the value of a certai n parameter) ? (b) tlQ~~L~~l!rQ1!iIMHQ~ : How is it possible to compute a "distance" between a given model and a less (or more) sophisticated one. and what is the technical meaning of such a "distance" ? (c) BQe~~~~~~ : To what extent do the qualities of a procedure. well adapted to a "small" model. deteriorate when this model is replaced by a more general one? This question can be considered not only. as usual. in a parametric framework (contamina­ tion) or in the extension from parametriC to non parametric models but also.
    Anmerkung: 1. Protecting Against Gross Errors: The Aid of Bayesian Methods -- 2. Bayesian Approaches to Outliers and Robustness -- 3. The Probability Integral Tranformation for Non-Necessary Absolutely Continuous Distribution Functions, and its Application to Goodness-of-Fit Tests -- 4. Simulation in the General First Order Autoregressive Process (Unidimensional Normal Case) -- 5. Non Parametric Prediction in Stationary Processes -- 6. Approximate Reductions of Bayesian Experiments -- 7. Theory and Applications of Least Squares Approximation in Bayesian Analysis -- 8. Non Parametric Bayesian Statistics: A Stochastic Process Approach -- 9. Robust Testing for Independent Non-Identically Distributed Variables and Markov Chains -- 10. On the Use of some Variation Distance Inequalities to estimate the Difference between Sample and Perturbed Sample -- 11. A Contribution to Robust Principal Component Analysis -- 12. From Non Parametric Regression to Non Parametric Prediction: Survey of the Mean Square Error and Original Results on the Predictogram.
    In: Springer eBooks
    Weitere Ausg.: Printed edition: ISBN 9780387908090
    Sprache: Englisch
    Schlagwort(e): Konferenzschrift ; Konferenzschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz