Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_9947363010902882
    Umfang: XV, 270 p. 25 illus. , online resource.
    ISBN: 9781461215523
    Serie: Lecture Notes in Statistics, 142
    Inhalt: "Ninety percent of inspiration is perspiration. " [31] The Wiener approach to nonlinear stochastic systems [146] permits the representation of single-valued systems with memory for which a small per­ turbation of the input produces a small perturbation of the output. The Wiener functional series representation contains many transfer functions to describe entirely the input-output connections. Although, theoretically, these representations are elegant, in practice it is not feasible to estimate all the finite-order transfer functions (or the kernels) from a finite sam­ ple. One of the most important classes of stochastic systems, especially from a statistical point of view, is the case when all the transfer functions are determined by finitely many parameters. Therefore, one has to seek a finite-parameter nonlinear model which can adequately represent non­ linearity in a series. Among the special classes of nonlinear models that have been studied are the bilinear processes, which have found applica­ tions both in econometrics and control theory; see, for example, Granger and Andersen [43] and Ruberti, et al. [4]. These bilinear processes are de­ fined to be linear in both input and output only, when either the input or output are fixed. The bilinear model was introduced by Granger and Andersen [43] and Subba Rao [118], [119]. Terdik [126] gave the solution of xii a lower triangular bilinear model in terms of multiple Wiener-It(') integrals and gave a sufficient condition for the second order stationarity. An impor­ tant.
    Anmerkung: 1 Foundations -- 1.1 Expectation of Nonlinear Functions of Gaussian Variables -- 1.2 Hermite Polynomials -- 1.3 Cumulants -- 1.4 Diagrams, and Moments and Cumulants for Gaussian Systems -- 1.5 Stationary processes and spectra -- 2 The Multiple Wiener-Itô Integral -- 2.1 Functions of Spaces $$ \overline {L_{\Phi }^{n}} $$ and $$ \widetilde{{L_{\Phi }^{n}}} $$ -- 2.2 The multiple Wiener-Itô Integral of second order -- 2.3 The multiple Wiener-Itô integral of order n -- 2.4 Chaotic representation of stationary processes -- 3 Stationary Bilinear Models -- 3.1 Definition of bilinear models -- 3.2 Identification of a bilinear model with scalar states -- 3.3 Identification of bilinear processes, general case -- 3.4 Identification of multiple-bilinear models -- 3.5 State space realization -- 3.6 Some bilinear models of interest -- 3.7 Identification of GARCH(1,1) Model -- 4 Non-Gaussian Estimation -- 4.1 Estimating a parameter for non-Gaussian data -- 4.2 Consistency and asymptotic variance of the estimate -- 4.3 Asymptotic normality of the estimate -- 4.4 Asymptotic variance in the case of linear processes -- 5 Linearity Test -- 5.1 Quadratic predictor -- 5.2 The test statistics -- 5.3 Comments on computing the test statistics -- 5.4 Simulations and real data -- 6 Some Applications -- 6.1 Testing linearity -- 6.2 Bilinear fitting -- Appendix A Moments -- Appendix B Proofs for the Chapter Stationary Bilinear Models -- Appendix C Proofs for Section 3.6.1 -- Appendix D Cumulants and Fourier Transforms for GARCH(1,1) -- Appendix E Proofs for the Chapter Non-Gaussian Estimation -- E.0.1 Proof for Section 4.4 -- Appendix F Proof for the Chapter Linearity Test -- References.
    In: Springer eBooks
    Weitere Ausg.: Printed edition: ISBN 9780387988726
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz