UID:
almahu_9947363741802882
Format:
XVIII, 242 p.
,
online resource.
ISBN:
9783540353867
Series Statement:
Lecture Notes in Physics, 707
Content:
The present monograph gives a short and concise introduction to classical and quantum mechanics on two-point homogenous Riemannian spaces, with empahsis on spaces with constant curvature. Chapter 1-4 provide the basic notations from differential geometry for studying two-body dynamics in these spaces. Chapter 5 deals with the problem of finding explicitly invariant expressions for the two-body quantum Hamiltonian. Chapter 6 addresses one-body problems in a central potential. Chapter 7 studies the classical counterpart of the quantum system of chapter 5. Chapter 8 investigates some applications in the quantum realm, namely for the coulomb and oscillator potentials.
Note:
Two-Point Homogeneous Riemannian Spaces -- Differential Operators on Smooth Manifolds -- Algebras of Invariant Differential Operators on Unit Sphere Bundles Over Two-Point Homogeneous Riemannian Spaces -- Hamiltonian Systems with Symmetry and Their Reduction -- Two-Body Hamiltonian on Two-Point Homogeneous Spaces -- Particle in a Central Field on Two-Point Homogeneous Spaces -- Classical Two-Body Problem on Two-Point Homogeneous Riemannian Spaces -- Quasi-Exactly Solvability of the Quantum Mechanical Two-Body Problem on Spheres.
In:
Springer eBooks
Additional Edition:
Printed edition: ISBN 9783540353843
Language:
English
URL:
http://dx.doi.org/10.1007/b11771456