Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin Heidelberg,
    UID:
    almahu_9947363904702882
    Format: XII, 144 p. , online resource.
    ISBN: 9783642111754
    Series Statement: Lecture Notes in Mathematics, 1988
    Content: Weyl groups are particular cases of complex reflection groups, i.e. finite subgroups of GLr(C) generated by (pseudo)reflections. These are groups whose polynomial ring of invariants is a polynomial algebra. It has recently been discovered that complex reflection groups play a key role in the theory of finite reductive groups, giving rise as they do to braid groups and generalized Hecke algebras which govern the representation theory of finite reductive groups. It is now also broadly agreed upon that many of the known properties of Weyl groups can be generalized to complex reflection groups. The purpose of this work is to present a fairly extensive treatment of many basic properties of complex reflection groups (characterization, Steinberg theorem, Gutkin-Opdam matrices, Solomon theorem and applications, etc.) including the basic findings of Springer theory on eigenspaces. In doing so, we also introduce basic definitions and properties of the associated braid groups, as well as a quick introduction to Bessis' lifting of Springer theory to braid groups.
    Note: Preliminaries -- Prerequisites and Complements in Commutative Algebra -- Polynomial Invariants of Finite Linear Groups -- Finite Reflection Groups in Characteristic Zero -- Eigenspaces and Regular Elements.
    In: Springer eBooks
    Additional Edition: Printed edition: ISBN 9783642111747
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages