Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9948025457902882
    Format: 1 online resource (373 p.)
    Edition: 1st edition
    ISBN: 1-281-27283-3 , 9786611272838 , 0-08-055966-2
    Content: New possibilities have recently emerged for producing optical beams with complex and intricate structures, and for the non-contact optical manipulation of matter. This book fully describes the electromagnetic theory, optical properties, methods and applications associated with this new technology. Detailed discussions are given of unique beam characteristics, such as optical vortices and other wavefront structures, the associated phase properties and photonic aspects, along with applications ranging from cold atom manipulation to optically driven micromachines.Features include:
    Note: Description based upon print version of record. , Front cover; Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces; Copyright page; Contents; Author Affiliations; Preface; Chapter 1. Introduction to Phase-Structured Electromagnetic Waves; 1.1 Introduction; 1.2 Laguerre-Gaussian Beams and Orbital Angular Momentum; 1.3 Bessel and Mathieu Beams; 1.4 General Solution of the Wave Equation; 1.5 Classical or Quantum?; 1.6 Creating Laguerre-Gaussian Beams with Lenses and Holograms; 1.7 Coherence: Spatial and Temporal; 1.8 Transformations Between Basis Sets; 1.9 Conclusion; References , Chapter 2. Angular Momentum and Vortices in Optics2.1 Introduction; 2.2 Classical Angular Momentum of Fields and Particles; 2.3 Separation of Radiative Angular Momentum in L and S; 2.4 Multipole Fields and Their Vortex Structure; 2.5 Angular Momentum of Monochromatic Paraxial Beams; 2.6 Quantum Description of Paraxial Beams; 2.7 Nonmonochromatic Paraxial Beam; 2.8 Operator Description of Classical Paraxial Beams; 2.9 Dynamics of Optical Vortices; 2.10 Conclusion; References; Chapter 3. Singular Optics and Phase Properties; 3.1 Fundamental Phase Singularities; 3.2 Beams with Composite Vortices , 3.3 Noninteger Vortex Beams3.4 Propagation Dynamics; 3.5 Conclusions; Acknowledgments; References; Chapter 4. Nanoscale Optics: Interparticle Forces; 4.1 Introduction; 4.2 QED Description of Optically Induced Pair Forces; 4.3 Overview of Applications; 4.4 Discussion; Acknowledgments; References; Chapter 5. Near-Field Optical Micromanipulation; 5.1 Introduction; 5.2 Theoretical Considerations for Near-Field Trapping; 5.3 Experimental Guiding and Trapping of Particles in the Near Field; 5.4 Emergent Themes in the Near Field; 5.5 Conclusions; Acknowledgments; References , Chapter 6. Holographic Optical Tweezers6.1 Background; 6.2 Example Rationale for Constructing Extended Arrays of Traps; 6.3 Experimental Details; 6.4 Algorithms for Holographic Optical Traps; 6.5 The Future of Holographic Optical Tweezers; Acknowledgments; References; Chapter 7. Atomic and Molecular Manipulation Using Structured Light; 7.1 Introduction; 7.2 A Brief Overview; 7.3 Transfer of OAM to Atoms and Molecules; 7.4 Doppler Forces and Torques; 7.5 The Doppler Shift; 7.6 Rotational Effects on Liquid Crystals; 7.7 Comments and Conclusions; Acknowledgments; References , Chapter 8. Optical Vortex Trapping and the Dynamics of Particle Rotation8.1 Introduction; 8.2 Computational Electromagnetic Modeling of Optical Trapping; 8.3 Electromagnetic Angular Momentum; 8.4 Electromagnetic Angular Momentum of Paraxial and Nonparaxial Optical Vortices; 8.5 Nonparaxial Optical Vortices; 8.6 Trapping in Vortex Beams; 8.7 Symmetry and Optical Torque; 8.8 Zero Angular Momentum Optical Vortices; 8.9 Gaussian ``Longitudinal'' Optical Vortex; 8.10 Conclusion; References; Chapter 9. Rotation of Particles in Optical Tweezers; 9.1 Introduction , 9.2 Using Intensity Shaped Beams to Orient and Rotate Trapped Objects , English
    Additional Edition: ISBN 0-12-374027-4
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages