UID:
almahu_9948025745402882
Format:
1 online resource (480 pages) :
,
illustrations.
ISBN:
0-12-801972-7
,
0-12-801970-0
Series Statement:
Interface Science and Technology ; Volume 21
Note:
Front Cover -- Self-Assembly Processes at Interfaces: Multiscale Phenomena -- Interface Science and Technology -- Self-Assembly Processes at Interfaces: Multiscale Phenomena -- Copyright -- Contents -- Introduction -- REFERENCES -- 1 - Surfaces and Basics From Surface Science, Thermodynamics of Interfaces and Kinetics -- 1.1 INTERFACES -- 1.1.1 Interfaces and Phases -- 1.1.2 Surface Tension -- 1.1.3 The Kelvin Equation and the Phenomenon of Capillary Condensation -- 1.2 THERMODYNAMICS OF INTERFACES -- 1.2.1 The Gibbs Equation -- 1.2.2 Thermodynamics of Surface Transformations -- 1.2.3 Effects of Electrical Fields on the Surface Thermodynamics: Electrocapillarity -- 1.2.4 A Thermodynamic Definition of Self-assembly -- 1.3 ADSORPTION MODELS -- 1.3.1 General Considerations -- 1.3.2 The Langmuir Adsorption Model -- 1.3.3 The Frumkin Adsorption Model -- 1.3.4 The Freundlich Adsorption Model -- 1.3.5 The Brunauer-Emmett-Teller Model -- 1.3.6 The Random Sequential Adsorption Model -- 1.4 KINETIC ASPECTS -- 1.5 NUCLEATION -- 1.6 COOPERATIVITY IN SELF-ASSEMBLY -- REFERENCES -- 2 - Intermolecular Forces and Solvation -- 2.1 INTERACTIONS OF ELECTROSTATIC ORIGIN -- 2.1.1 Charge-Charge Interactions -- 2.1.2 van der Waals Interactions Between Small Molecules -- 2.1.3 van der Waals Interactions Between Macroscopic Bodies -- 2.1.3.1 Microscopic Approach Considering Pairwise Interactions -- 2.1.3.2 Macroscopic Approach -- 2.1.4 The Derjaguin Approximation -- 2.1.5 The Disjoining Pressure -- 2.1.6 The Derjaguin-Landau-Verwey-Overbeek Theory -- 2.1.7 π-π Interactions -- 2.2 HYDROGEN BONDS -- 2.3 HYDROPHOBIC INTERACTIONS -- 2.4 HYDRATION FORCES -- 2.5 STERIC AND UNDULATION FORCES -- 2.6 SELECTIVITY AND COOPERATIVITY -- 2.6.1 Selectivity -- 2.6.2 Cooperativity in the Interactions at Interfaces -- 2.7 EXPERIMENTAL TECHNIQUES TO MEASURE SURFACE FORCES.
,
2.7.1 The Surface Force Apparatus -- 2.7.2 Micropipettes -- 2.7.3 Atomic Force Microscopy -- 2.7.4 Total Internal Reflection Microscopy -- 2.7.5 Optical and Magnetic Tweezers -- 2.8 DYNAMIC ASPECTS IN SURFACE FORCES -- 2.9 INFLUENCE OF FORCES ON SELF-ASSEMBLY -- 2.9.1 Self-assembly of Amphiphiles -- 2.9.2 Self-assembled Structures Made of Lipids -- 2.9.2.1 Anisotropy in the Composition of the Two Leaflets of a Real Bilayer -- 2.9.2.2 The Fluid Mosaic Model -- 2.9.2.3 Interactions Between Lipids and Peripheral Proteins -- 2.9.3 Self-assembled Structures From Block Copolymers -- 2.9.4 Folding of Biomacromolecules in Ordered Structures -- 2.9.4.1 Protein Folding -- 2.9.4.2 Self-assembly With DNA -- 2.9.5 Self-assembly of Nanoparticles -- REFERENCES -- FURTHER READING -- 3 - Experimental Methods to Investigate Self-Assembly at Interfaces -- 3.1 MACROSCOPIC METHODS -- 3.1.1 Surface Tension, Contact Angles, and Characterization of Foams -- 3.1.1.1 Static Contact Angles -- 3.1.1.1.1 Particles Trapped at Liquid-Gas Interfaces -- 3.1.1.1.2 Superhydrophobic Coatings -- 3.1.1.2 Dynamics of Wetting -- 3.1.1.3 Electrowetting -- 3.1.1.4 Surface Tension Measurement Between Two Immiscible Liquids -- 3.1.1.5 Stimuli-Responsive Changes of the Contact Angle -- 3.1.1.6 Applications in Detergency and Flotation -- 3.1.1.6.1 Detergency -- 3.1.1.6.2 Flotation -- 3.1.1.7 Foams -- 3.1.2 Quantification of Adsorption -- 3.1.2.1 Gas Adsorption on Colloids and Porous Materials -- 3.1.2.2 Quantification of Adsorption From Solution -- 3.1.2.2.1 Equilibrium Dialysis -- 3.1.3 Spectroscopic Methods and Methods Based on Reflection of Light -- 3.1.3.1 UV-Visible Absorption and Fluorescence Spectroscopy -- 3.1.3.1.1 Circular Dichroism -- 3.1.3.1.2 Fluorescence Spectroscopy -- 3.1.3.1.3 Laser Confocal Scanning Microscopy -- 3.1.3.1.4 Total Internal Reflection Fluorescence.
,
3.1.3.1.5 Near-Field Fluorescence Spectroscopy -- 3.1.3.1.6 Fluorescence Upconversion -- 3.1.3.1.7 Fluorescence Detection in Microarrays -- 3.1.3.2 Vibrational Spectroscopies -- 3.1.3.2.1 Polarization Modulation-Infrared Reflection Absorption Spectroscopy -- 3.1.3.2.2 Raman Spectroscopy -- 3.1.3.3 Techniques Based on the Reflection of Light -- 3.1.3.3.1 Reflectometry -- 3.1.3.3.2 Stagnation Point Reflectometry -- 3.1.3.3.3 Surface Plasmon Resonance Spectroscopy -- 3.1.3.3.4 Optical Waveguide Lightmode Spectroscopy -- 3.1.3.3.5 Nonlinear Optical Methods -- 3.1.4 Acoustic Methods -- 3.1.5 Scattering Methods -- 3.1.6 Electrochemical Methods -- 3.1.6.1 Measurement of Surface Potential -- 3.1.6.1.1 Streaming Potential -- 3.1.6.1.2 Spinning Disk Method -- 3.1.6.1.3 Acoustic Methods to Determine Surface Potentials -- 3.1.6.2 Cyclic Voltammetry -- 3.1.6.3 Capacitance Measurements -- 3.1.6.4 Electrochemical Impedance Spectroscopy -- 3.1.6.5 Electrochemical Methods as Tools in Nanotechnology -- 3.1.7 Calorimetry -- 3.1.7.1 Differential Scanning Calorimetry -- 3.1.7.2 Isothermal Titration Calorimetry -- 3.1.8 Hydrodynamic Methods -- 3.1.9 Interfacial Rheology -- 3.2 STRUCTURAL METHODS -- 3.2.1 Nuclear Magnetic Resonance and Electron Paramagnetic Resonance Spectroscopies -- 3.2.2 Electron Microscopy -- 3.2.3 Scattering and Diffraction Methods -- 3.2.4 Tunneling Microscopies, Atomic Force Microscopy, and Near-Field Optical Microscopies -- 3.2.4.1 Scanning Tunneling Microscopy -- 3.2.4.2 Chemical Imaging by Atomic Force Microscopy -- 3.2.4.3 Near-Field Optical Microscopies -- 3.2.5 Surface Analysis and Depth Profiling Methods -- 3.2.5.1 X-Ray Photoelectron Spectroscopy -- 3.2.5.2 Auger Electron Spectroscopy and Energy Dispersive X-Ray Analysis -- 3.2.5.3 X-Ray Absorption Fine Structure Spectroscopy -- 3.2.5.4 Secondary Ion Mass Spectrometry.
,
3.3 COUPLED CHARACTERIZATION METHODS -- 3.3.1 Surface Plasmon Field-Enhanced Fluorescence Spectroscopy -- 3.3.2 Combined Reflectometry and Quartz Crystal Microbalance With Dissipation Devices -- 3.3.3 Quartz Crystal Microbalance With Dissipation Monitoring Coupled With ATR-FTIR Spectroscopy -- 3.3.4 ATR-FTIR Spectroscopy Combined With Dynamic Light Scattering -- 3.3.5 Spectroscopy Combined With Electrochemistry -- 3.3.6 Scanning Near-Field Optical Microscopies and Spectroscopy -- 3.3.7 Combinatorial Approaches in Surface Characterization -- REFERENCES -- 4 - Simulation Methods: Free Energy Calculations, Monte Carlo, Molecular Dynamics, and Multiscale Simulations -- 4.1 FREE ENERGY CALCULATIONS -- 4.2 MONTE CARLO SIMULATIONS -- 4.3 MOLECULAR DYNAMICS SIMULATIONS -- 4.4 MULTISCALE SIMULATIONS -- REFERENCES -- 5 - Adsorption -- 5.1 FILM PRODUCTION METHODS -- 5.1.1 Adsorption -- 5.1.2 Chemisorption -- 5.1.3 Dip and Spin Coating -- 5.1.4 Langmuir-Blodgett and Langmuir-Schaefer Transfer From the Water-Air Interface -- 5.1.4.1 Langmuir-Blodgett Deposition -- 5.1.4.2 Horizontal Langmuir-Schaefer Transfer -- 5.1.5 Spreading of Lipid Bilayers -- 5.1.5.1 Tethered Lipid Bilayers -- 5.1.5.2 Black Lipid Membranes -- 5.1.6 Electrospinning -- 5.2 ADSORPTION OF SYNTHETIC POLYMERS -- 5.3 ADSORPTION OF PROTEINS -- 5.3.1 Adsorption of Proteins at Liquid-Air and Liquid-Liquid Interfaces -- 5.3.2 Adsorption of Proteins at Solid-Liquid Interfaces -- 5.3.2.1 Adsorption Kinetics -- 5.3.2.2 Thermodynamic Aspects -- 5.3.2.3 Heterogeneity of Adsorption Sites for Protein Adsorption and Heterogenous Orientation of Proteins -- 5.4 ADSORPTION OF DNA AT SOLID-WATER INTERFACES -- 5.5 ADSORPTION AND SELF-ASSEMBLY OF SUPRAMOLECULAR ASSEMBLIES -- 5.6 LAYER-BY-LAYER AND IONIC SELF-ASSEMBLY DEPOSITION METHODS.
,
5.6.1 Kinds of Molecules That Can Be Deposited, Deposition Methods, and Growth Regimes of Films Produced in a Layer-by-Layer Manner -- 5.6.2 Properties of Polyelectrolyte Multilayer Films -- 5.6.2.1 Properties due to the Topmost Layer -- 5.6.2.2 Charge Compensation in Polyelectrolyte Multilayers -- 5.6.2.3 Swelling of the Multilayer Films -- 5.6.2.4 Dynamic Aspects: Chain Mobility and Exchange -- 5.6.2.5 Mobility of Polyelectrolytes in Polyelectrolyte Multilayer Films -- 5.6.2.6 Internal Structure: Stratification Versus Intermixing -- 5.6.2.7 Mechanical Properties -- 5.6.2.8 Superposition of Stacks of Multilayers -- 5.6.2.9 Conformation of Polypeptides in Polyelectrolyte Multilayers -- 5.6.2.10 Porosity -- 5.6.3 Applications of Films Produced in a Layer-by-Layer Manner -- 5.6.3.1 Biological Applications -- 5.6.3.2 Films With Applications in Electronics and Charge Transfer Processes -- 5.6.3.3 Films With Controlled Optical Properties -- 5.6.3.4 Applications in Environmental Sciences -- 5.6.3.5 Intumescent Coatings -- 5.6.4 Requirements for Future Developments in Layer-by-Layer Technology -- 5.7 PATTERNING PROCESSES -- 5.7.1 Micro/Nanolithography and Nanopatterning Methods -- 5.7.2 Dip-Pen Nanolithography -- REFERENCES -- 6 - Using Covalent Chemistry: Grafting on and Grafting From Surfaces -- 6.1 PREPARATION AND CLEANING OF SURFACES -- 6.1.1 Preparation of Liquid-Gas Interfaces -- 6.1.2 Preparation of Solid-Gas Interfaces -- 6.2 SELF-ASSEMBLED MONOLAYERS -- 6.2.1 Silane-Based Self-assembled Monolayers on Oxides -- 6.2.2 Thiol-Based Self-assembled Monolayers on Noble Metals -- 6.2.3 Other Kinds of Thiols -- 6.3 GRAFTING "TO" APPROACHES -- 6.4 GRAFTING "FROM" APPROACHES -- 6.5 GRAFTING "THROUGH" APPROACHES -- 6.6 ELECTRODEPOSITION OF POLYMERS -- 6.7 PLASMA POLYMERIZATION -- 6.8 POROUS FILMS, SOL-GEL CHEMISTRY, SONOCHEMISTRY.
,
6.8.1 Porous Films and Materials.
Language:
English