Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :Woodhead Publishing,
    UID:
    almahu_9948026364702882
    Format: 1 online resource (598 pages) : , illustrations, graphs.
    ISBN: 0-08-100409-5
    Series Statement: Woodhead Publishing Series in Composites Science and Engineering ; Number 75
    Note: Front Cover -- Progress in Rubber Nanocomposites -- Copyright Page -- Contents -- List of contributors -- Woodhead publishing series in composites science and engineering -- 1 General introduction to rubber compounding -- Abbrevations -- 1.1 Compounding and its importance -- 1.2 Introduction to compounding ingredients -- 1.2.1 Elastomers -- 1.2.1.1 Natural rubber -- Latex concentrate -- Technically specified rubber (TSR) and sheet rubber -- Properties of natural rubber -- Applications -- 1.2.1.2 Synthetic rubbers -- General purpose synthetic rubbers -- Styrene-butadiene rubber (SBR) -- Applications -- Polybutadiene (PBR/PBD) -- Properties of PBD -- Application -- Polyisoprene rubber (IR) -- Properties IR -- Applications -- Special purpose and speciality synthetic rubbers -- Butyl Rubbers (IIR-isobutylene isoprene rubber) -- Properties -- Applications -- Ethylene-propylene rubber (EPM/EPDM) -- Properties -- Application -- Nitrile rubber (NBR) -- Applications -- Polychloroprene rubber (CR) -- Types of Neoprene rubber -- Properties -- Applications -- Silicone rubber (Q rubber) -- Types of silicone polymers -- Properties -- Limitations of silicones -- Applications -- Ethylene-vinyl Acetate copolymer (EVA) -- Fluorocarbon rubber (FKM) -- Examples -- Properties -- Applications -- Chlorosulfonated polyethylene (CSM) -- Properties of CSM -- Applications -- Polyurethane rubbers (PUR) -- Polyacrylate rubbers (ACM) -- Polysulfide rubber (T rubber) -- Properties -- Applications -- 1.2.1.3 Thermoplastic elastomers (TPE) -- 1.2.2 Peptizers -- 1.2.3 Activators -- 1.2.4 Fillers -- 1.2.4.1 One-dimensional nanofiller -- 1.2.4.2 Two-dimensional nanofillers -- 1.2.4.3 Three-dimensional nanofillers -- 1.2.4.4 Reinforcing and non reinforcing fillers -- Reinforcing Fillers -- Nonreinforcing fillers -- 1.2.5 Processing aids -- 1.2.5.1 Plasticizers -- Petroleum-based. , Ester plasticizers -- 1.2.5.2 Other processing aids -- 1.2.6 Accelerators -- 1.2.6.1 Accelerators based on chemical structures -- 1.2.6.2 Accelerators based on functional action -- 1.2.7 Antidegradents -- 1.2.7.1 Antioxidants -- 1.2.7.2 Antiozonants -- 1.2.8 Curing agents -- 1.2.8.1 Sulfur -- Sulfur donors (sulfur bearing chemicals) -- 1.2.8.2 Peroxides -- 1.2.8.3 Resin curing -- 1.2.8.4 Metal oxides curing -- 1.2.9 Special purpose additives -- 1.2.9.1 Blowing agents -- 1.2.9.2 Silane coupling agents -- 1.2.9.3 Antistatic agents -- 1.2.9.4 Flame retardants -- 1.3 Rubber processing equipments -- 1.3.1 Mixing equipments -- 1.3.1.1 Two roll mill -- 1.3.1.2 Internal mixer -- 1.3.1.3 Continuous mixers -- 1.3.2 Molding equipments -- 1.3.2.1 Compression molding -- 1.3.2.2 Transfer molding -- 1.3.2.3 Extrusion molding -- Calendering -- 1.4 Different vulcanization methods -- 1.5 Testing of compounded rubber -- 1.5.1 Processability of rubber compounds -- 1.5.2 Cure studies and viscosity -- 1.5.3 Mechanical properties of compounded rubber -- 1.5.3.1 Tensile and tear properties -- 1.5.3.2 Hardness (ASTM D 2240, ASTM D 1415) -- 1.5.3.3 Set properties -- 1.5.3.4 Abrasion resistance (ASTM D 5963) -- 1.6 New trends in rubber compounding -- 1.6.1 Green compounding -- 1.6.2 REACH regulations -- 1.7 Conclusion and future outlook -- Reference and further reading -- 2 Micro- and nano-fillers used in the rubber industry -- 2.1 Introduction -- 2.2 Rubber category -- 2.2.1 Natural rubber -- 2.2.2 Styrene-butadiene rubber (SBR) -- 2.2.3 Polyurethane rubber (PU) -- 2.2.4 Silicone rubber (SIR) -- 2.3 Fillers in the rubber industry -- 2.3.1 Carbon origin -- 2.3.1.1 Carbon black -- 2.3.1.2 Carbon fiber -- 2.3.1.3 Carbon nanotubes (CNTs) -- 2.3.1.4 Graphene and graphite -- 2.3.2 Inorganic origin -- 2.3.2.1 Calcium carbonate (CaCO3) -- 2.3.2.2 Clay. , Halloysite nanotubes (HNT) and kaolinite -- Montmorillonite (MMT) -- 2.3.2.3 Polyhedral oligomeric silsesquioxane (POSS) -- 2.3.2.4 Silica (SiO2) -- 2.3.2.5 Other less frequently used particles -- Alumina trihydrate (ATH, Al2O3·3H2O, or Al(OH)3) -- Barium sulfate (BaSO4) -- Calcium sulfate (CaSO4·nH2O) -- Magnesium carbonate (MgCO3) -- Talc (Mg3Si4O10(OH)2) -- Titanium dioxide (TiO2) -- Zinc oxide (ZnO) -- 2.3.3 Biofillers -- 2.3.3.1 Cellulose -- 2.3.3.2 Husk -- 2.3.3.3 Wood-lignin fiber -- 2.3.3.4 Coir-lignocellulosic fiber -- 2.4 Impact of particle features on composites properties -- 2.4.1 Particle size, aspect ratio, and surface area-shape parameter -- 2.4.2 Percolation threshold -- 2.4.3 Interfacial interactions -- 2.4.4 Particle alignment -- 2.5 Summary -- Nomenclature -- References -- 3 Mechanism of reinforcement using nanofillers in rubber nanocomposites -- 3.1 Introduction -- 3.2 Reinforcing nanofillers for rubbers -- 3.2.1 Particulate or spherical fillers -- 3.2.2 Tubular filler: carbon nanotubes (CNTs) and nanofibers -- 3.2.3 Layered filler: Nanoclay and graphitic nanofillers -- 3.2.3.1 Nanoclay -- 3.2.3.2 Graphene -- 3.2.4 Chemical and interface modification on nanofillers -- 3.3 Mechanism of rubber reinforcement by nanofillers -- 3.3.1 Percolation phenomena -- 3.3.2 Reinforcing mechanism under small deformation -- 3.3.3 Reinforcing mechanism under large deformation -- 3.4 Conclusions -- References -- 4 Interphase characterization in rubber nanocomposites -- 4.1 Introduction -- 4.1.1 Interdiffusion -- 4.1.2 Adsorption or wetting caused by van der Waals force -- 4.1.3 Electrolyte or hydrogen bonding -- 4.1.4 Chemical reaction -- 4.1.5 Interface and interphase (namely interfacial region) -- 4.1.6 Factors influencing interfacial interactions -- 4.2 Interphase characterization in rubber composites -- 4.2.1 Mechanical characterization. , 4.2.1.1 Static mechanical test (tension, compression, bending, indentation) -- 4.2.1.2 Rheology -- 4.2.1.3 Viscoelasticity -- 4.2.1.4 Dynamic mechanical analysis (DMA) of tension, compression, and bending modes -- Two-phase model -- Carbon fillers -- Inorganic fillers -- Biofillers -- Other micro and nanoparticles -- Hybrid composites containing more than one particle -- Three-phase model -- 4.2.1.5 Atomic force microscopy (AFM) -- 4.2.2 Thermal characterization -- 4.2.2.1 Thermogravimetric analysis (TGA) -- 4.2.2.2 Differential scanning calorimetry (DSC) -- 4.2.3 Electron microscopy -- 4.2.3.1 Scanning electron microscopy (SEM) -- 4.2.3.2 Transmission electron microscopy (TEM) -- 4.2.3.3 Scanning transmission electron microscopy (STEM) -- 4.2.4 Spectral analysis -- 4.2.4.1 Wide-angle X-ray diffraction (WAXD) -- 4.2.4.2 Fourier transform infrared spectroscopy (FTIR) -- 4.2.4.3 Nuclear magnetic resonance (NMR) -- 4.3 Interfacial modification -- 4.3.1 Coupling agents -- 4.3.2 Polymer coating -- 4.3.3 Layered sheets intercalation -- 4.3.4 Natural fiber modification -- 4.4 Summary -- Nomenclature -- References -- 5 Rubber nanocomposites with nanoclay as the filler -- 5.1 Introduction -- 5.2 Nanoclay structure, chemical modification, and characterization -- 5.3 Type of rubbers and their characteristic properties -- 5.3.1 Nitrile rubber -- 5.3.2 Chloroprene rubber -- 5.3.3 Styrene rubber -- 5.4 Preparation of rubber nanoclay composites -- 5.4.1 Nitrile rubber with organically modified montmorillonite (OMMT) -- 5.4.2 Chloroprene rubber -- 5.4.3 Styrene rubber -- 5.4.4 Rubber blends -- 5.5 Manufacturing techniques -- 5.5.1 Two roll mill mixing -- 5.5.2 Latex compounding -- 5.5.3 In situ polymerization -- 5.5.4 Freeze drying -- 5.5.5 Supercritical CO2 assisted preparation -- 5.6 Nanocomposite structure and characterization of structure and morphology. , 5.6.1 Transmission electron microscopy (TEM) -- 5.6.2 Small angle X-ray scattering (SAXS) -- 5.6.3 Cure characteristics -- 5.7 Properties of nanocomposites -- 5.7.1 Mechanical properties -- 5.7.2 Dynamic mechanical analysis (DMA) -- 5.7.3 Rheological properties -- 5.7.4 Swelling -- 5.8 Conclusion and applications -- References -- 6 Rubber nanocomposites with graphene as the nanofiller -- 6.1 Introduction -- 6.2 Graphite, graphene oxide, reduced graphene oxide, and graphene -- 6.2.1 Synthesis of graphene oxide and reduced graphene oxide -- 6.2.2 Synthesis of graphene -- 6.2.2.1 Chemical vapor deposition (CVD) -- 6.2.2.2 Thermal exfoliation -- 6.2.2.3 Mechanical exfoliation in solution -- 6.2.2.4 Other methods -- 6.2.3 Different characterizations -- 6.2.3.1 X-ray diffraction (XRD) -- 6.2.3.2 Raman spectroscopy -- 6.2.3.3 X-ray photoelectron spectroscopy (XPS) -- 6.2.3.4 Microscopic analysis -- 6.2.4 Novel properties -- 6.2.4.1 Electrical property -- 6.2.4.2 Thermal property -- 6.2.4.3 Mechanical property -- 6.3 Graphene-rubber nanocomposites -- 6.3.1 Fabrication methods -- 6.3.1.1 Solution intercalation/latex blending -- 6.3.1.2 Melt blending -- 6.3.1.3 In situ polymerization -- 6.3.2 Characterizations -- 6.3.2.1 X-ray diffraction (XRD) -- 6.3.2.2 Cure behavior -- 6.3.2.3 Microscopy -- 6.3.2.4 Contact angle measurement -- 6.3.3 Mechanical properties -- 6.3.3.1 Tensile features -- 6.3.3.2 Dynamic-mechanical thermal analysis (DMTA) -- 6.3.4 Thermal behavior -- 6.3.4.1 Thermal degradation behavior -- 6.3.4.2 Thermal conductivity -- 6.3.5 Gas barrier properties -- 6.3.6 Electrical properties -- 6.3.6.1 Dielectric properties -- 6.3.6.2 Electrical conductivity -- 6.4 Conclusions and prospects -- References -- 7 Rubber nanocomposites with polyhedral oligomeric silsesquioxanes (POSS) as the nanofiller -- 7.1 Introduction -- 7.2 Structure &. , Synthesis of POSS.
    Additional Edition: ISBN 0-08-100428-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages