UID:
almahu_9948026683302882
Format:
1 online resource (348 pages) :
,
illustrations (some color).
ISBN:
0-323-37830-7
,
0-323-37829-3
Series Statement:
Micro & Nano Technologies Series
Note:
Front Cover -- Supra-materials Nanoarchitectonics -- Supra-materials Nanoarchitectonics -- Copyright -- Contents -- Contributors -- Preface -- Overview -- 1 - Nanoarchitectonics of Basics Materials -- 1 - Nanocluster Science -- 1.1 INTRODUCTION -- 1.2 PRECISE SYNTHESIS -- 1.2.1 Fractionation -- 1.2.2 Size Focusing -- 1.2.3 Slow Reduction -- 1.2.4 Transformation From One Stable Size to Another -- 1.3 BASIC PROPERTIES -- 1.3.1 Stability -- 1.3.2 Geometrical Structures -- 1.3.3 Electronic Structures -- 1.3.4 Size-Specific Physical/Chemical Properties -- 1.4 FUNCTIONALIZATION METHODS -- 1.4.1 Selection of Ligand Functional Groups -- 1.4.2 Heteroatom Doping of the Metal Core -- 1.4.3 Control of the Nature of the Au-Ligand Bond -- 1.5 SUMMARY AND PERSPECTIVE -- REFERENCES -- 2 - Highly Luminescent Metal Nanocluster Molecules -- 2.1 INTRODUCTION -- 2.2 AU, AG, AND AU-AG ALLOY NANOCLUSTERS -- 2.3 BI NANOCLUSTERS -- 2.4 PERSPECTIVE -- REFERENCES -- 3 - Biomimetic Morphology Control of Metal Oxides and Their Site-Selective Immobilization -- 3.1 INTRODUCTION -- 3.2 LIQUID PHASE MORPHOLOGY CONTROL OF ZNO -- 3.2.1 Biomimetic Morphology Control of Stand-Alone ZnO Self-Assembled Film [2] -- 3.2.2 Biomimetic Morphology Control of Nanocrystal Assembled TiO2 Particles [4] -- 3.2.3 Biomimetic Morphology Control of Acicular BaTiO3 Particles [12] -- 3.3 BIOMIMETIC SITE-SELECTIVE IMMOBILIZATION OF METAL OXIDES -- 3.3.1 Biomimetic Site-Selective Immobilization of Anatase TiO2 [15] -- 3.3.2 Biomimetic Site-Selective Immobilization of Eu:Y2O3 [17] -- 3.4 SUMMARY -- REFERENCES -- 4 - Molecular Surface Arrangement to Control Dynamic Dewettability -- 4.1 INTRODUCTION -- 4.2 LOW CONTACT ANGLE HYSTERESIS SURFACES -- 4.2.1 Monolayers -- 4.2.2 Polymer Brushes -- 4.2.3 Alkylsilane-Derived Hybrid Films -- 4.3 SUMMARY -- REFERENCES -- 2 - Nanoarchitectonics of Inorganic Materials.
,
5 - Organic-Inorganic Hybrid Nanoarchitecture at Mesoscale -- 5.1 INTRODUCTION -- 5.2 ORGANIC-INORGANIC HYBRID HOLLOW CAPSULES PREPARED BY COLLOID TEMPLATING -- 5.3 SELF-ASSEMBLED NANOHYBRID OF MAGNETIC NANOPARTICLE CLUSTERS WITH POLYSACCHARIDE NANOGELS -- 5.4 SUMMARY -- REFERENCES -- 6 - Nanoarchitectonic Metals -- 6.1 INTRODUCTION -- 6.2 SEEDED-MEDIATED GROWTH METHOD -- 6.3 GALVANIC REPLACEMENT METHOD -- 6.4 POLYOL METHOD -- 6.5 SURFACTANT-MEDIATED METHOD -- 6.6 ELECTROCATALYTIC APPLICATIONS -- 6.7 CONCLUSIONS -- ACKNOWLEDGMENT -- REFERENCES -- 7 - Functional Layered Compounds for Nanoarchitectonics -- 7.1 INTRODUCTION -- 7.2 PHOTOFUNCTIONS OF INTERCALATION COMPOUNDS -- 7.3 RECONSTRUCTION OF NANOSHEETS INTO FUNCTIONAL NANOSTRUCTURES -- 7.3.1 Exfoliation of Layered Solids Into Nanosheets -- 7.3.2 Nanostructured Films -- 7.3.3 Porous Solids -- 7.4 NANOSHEETS FOR SOFT MATERIALS -- 7.4.1 Nanosheet Liquid Crystal -- 7.4.2 Composite Gel -- REFERENCES -- 3 - Nanoarchitectonics of Bio-Materials and for Biomedicals -- 8 - Engineering DNA Molecules for Morphological Reconfiguration -- 8.1 ENGINEERING STATIC DNA NANOSTRUCTURES -- 8.2 ENGINEERING DNA NANOSTRUCTURES WITH DYNAMIC MORPHOLOGY -- 8.3 CONSTRAINED MOTION OF DNA NANOSTRUCTURES IN THERMODYNAMIC EQUILIBRIUM -- 8.4 CONCLUSIONS -- REFERENCES -- 9 - Smart Polymers With Nanoarchitectonics -- 9.1 INTRODUCTION -- 9.2 CLASSIFICATION ON THE BASIS OF STIMULI -- 9.2.1 Physical Stimuli -- 9.2.2 Chemical Stimuli -- 9.3 APPLICATIONS OF SMART POLYMERS -- 9.3.1 Smart Hydrogels -- 9.3.2 Smart Surfaces -- 9.3.3 Smart Nanofibers -- 9.3.4 Smart Shape Memory -- 9.4 CONCLUSIONS -- REFERENCES -- 10 - Crystal-Induced Nanoarchitectonics of Organic Polymer Materials -- 10.1 INTRODUCTION -- 10.2 ORGANIC POLYMER MATERIALS FOR NANOARCHITECTONICS -- 10.2.1 Polymerization and Morphogenesis in Interspace of Nanocrystals.
,
10.2.2 Polymerization and Morphogenesis Using Surface of Oxidant Crystals -- 10.2.3 Polymerization and Morphogenesis Using Monomer Solid Crystals -- 10.3 CONCLUSIONS -- REFERENCES -- 11 - Nanoarchitectonics for Cyclodextrin-Mediated Solubilization and Nanoassembly of Therapeutic Agents -- 11.1 SUPRAMOLECULAR MANIPULATION: NANOMEDICINE WITH HOST-GUEST NANOARCHITECTONICS -- 11.2 CYCLODEXTRIN INCLUSION COMPLEX FORMATION TOWARD NANOASSEMBLED SYSTEMS -- 11.3 NANOASSEMBLY CONTROL USING A CD INCLUSION COMPLEX FOR PDT APPLICATION -- 11.4 SUMMARY -- REFERENCES -- 4 - Nanoarchitectonics for Energy/Environment -- 12 - Nanoarchitectonics Towards Smart Chemical Sensing -- 12.1 INTRODUCTION -- 12.2 RECENT EXAMPLES OF CHEMICAL SENSING -- 12.2.1 Ammonia Sensing -- 12.2.2 Mercury Sensing -- 12.2.3 Cesium Sensing -- 12.2.4 Methanol Sensing -- 12.2.5 Carcinogen Sensing -- 12.2.6 Explosive Sensing -- 12.2.7 Chemical Warfare Agent Sensing -- 12.2.8 Chiral Sensing -- 12.2.9 Biological Molecule Sensing -- 12.3 CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 13 - Nanoarchitectonics for Energy and Environment -- 13.1 INTRODUCTION -- 13.2 NANOARCHITECTONICS FOR DYE-SENSITIZED SOLAR CELLS -- 13.2.1 Development of Ru Complex Dyes for Enhancing the Photocurrent -- 13.2.2 Searching for an Effective Dye Structure for High Photovoltage -- 13.3 NANOARCHITECTONICS FOR BIOINSPIRED CATALYSIS -- 13.3.1 Photocatalysts Based on Light-Harvesting Supramolecular Nanotubes -- 13.3.2 Enzyme Reactors Based on Supramolecular Nanotubes With Tunable Diameters and Surfaces -- 13.4 NANOARCHITECTONICS FOR REVERSIBLE HYDROGEN STORAGE -- 13.5 DEVELOPMENT OF TEMPERATURE-RESPONSIVE HYDROGEL NANOPARTICLES FOR ENERGY-EFFICIENT CO2 SEPARATION -- 13.6 CONCLUSIONS -- REFERENCES -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- W -- Back Cover.
Language:
English