Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_9948030308402882
    Umfang: XVIII, 249 p. 23 illus., 10 illus. in color. , online resource.
    ISBN: 9783030046637
    Serie: Studies in Computational Intelligence, 807
    Inhalt: This book presents novel classification algorithms for four challenging prediction tasks, namely learning from imbalanced, semi-supervised, multi-instance and multi-label data. The methods are based on fuzzy rough set theory, a mathematical framework used to model uncertainty in data. The book makes two main contributions: helping readers gain a deeper understanding of the underlying mathematical theory; and developing new, intuitive and well-performing classification approaches. The authors bridge the gap between the theoretical proposals of the mathematical model and important challenges in machine learning. The intended readership of this book includes anyone interested in learning more about fuzzy rough set theory and how to use it in practical machine learning contexts. Although the core audience chiefly consists of mathematicians, computer scientists and engineers, the content will also be interesting and accessible to students and professionals from a range of other fields.
    Anmerkung: Introduction -- Classification -- Understanding OWA based fuzzy rough sets -- Fuzzy rough set based classification of semi-supervised data -- Multi-instance learning -- Multi-label learning -- Conclusions and future work -- Bibliography.
    In: Springer eBooks
    Weitere Ausg.: Printed edition: ISBN 9783030046620
    Weitere Ausg.: Printed edition: ISBN 9783030046644
    Sprache: Englisch
    Fachgebiete: Informatik
    RVK:
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz