UID:
almafu_9959327563202883
Umfang:
1 online resource
Ausgabe:
Second edition.
ISBN:
9781118671221
,
1118671228
,
9781118671139
,
1118671139
,
9781118671191
,
1118671198
,
1306532779
,
9781306532778
,
1118291921
,
9781118291924
Inhalt:
Building upon and updating the successful first edition, the second edition of Computational Organic Chemistry introduces computational modeling methods used as standard tools by organic chemists for searching, rationalizing, and predicting structure and reactivity of organic molecules. New coverage includes: significant problems with standard DFT (density functional theory) methods; ways to address these problems; computational organic spectroscopy; computational tools for understanding enzyme mechanisms; and new interviews. The text is particularly valuable to organic, physical organic, synt.
Anmerkung:
Cover -- Title Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 Quantum Mechanics for Organic Chemistry -- 1.1 Approximations to the Schrodinger Equation -- The Hartree -- Fock Method -- 1.1.1 Nonrelativistic Mechanics -- 1.1.2 The Born -- Oppenheimer Approximation -- 1.1.3 The One-Electron Wavefunction and the Hartree -- Fock Method -- 1.1.4 Linear Combination of Atomic Orbitals (LCAO) Approximation -- 1.1.5 Hartree -- Fock -- Roothaan Procedure -- 1.1.6 Restricted Versus Unrestricted Wavefunctions -- 1.1.7 The Variational Principle -- 1.1.8 Basis Sets -- 1.1.8.1 Basis Set Superposition Error -- 1.2 Electron Correlation -- Post-Hartree -- Fock Methods -- 1.2.1 Configuration Interaction (CI) -- 1.2.2 Size Consistency -- 1.2.3 Perturbation Theory -- 1.2.4 Coupled-Cluster Theory -- 1.2.5 Multiconfiguration SCF (MCSCF) Theory and Complete Active Space SCF (CASSCF) Theory -- 1.2.6 Composite Energy Methods -- 1.3 Density Functional Theory (DFT) -- 1.3.1 The Exchange-Correlation Functionals: Climbing Jacob's Ladder -- 1.3.1.1 Double Hybrid Functionals -- 1.3.2 Dispersion-Corrected DFT -- 1.3.3 Functional Selection -- 1.4 Computational Approaches to Solvation -- 1.4.1 Microsolvation -- 1.4.2 Implicit Solvent Models -- 1.4.3 Hybrid Solvation Models -- 1.5 Hybrid QM/MM Methods -- 1.5.1 Molecular Mechanics -- 1.5.2 QM/MM Theory -- 1.5.3 ONIOM -- 1.6 Potential Energy Surfaces -- 1.6.1 Geometry Optimization -- 1.7 Population Analysis -- 1.7.1 Orbital-Based Population Methods -- 1.7.2 Topological Electron Density Analysis -- 1.8 Interview: Stefan Grimme -- References -- Chapter 2 Computed Spectral Properties and Structure Identification -- 2.1 Computed Bond Lengths and Angles -- 2.2 IR Spectroscopy -- 2.3 Nuclear Magnetic Resonance -- 2.3.1 General Considerations -- 2.3.2 Scaling Chemical Shift Values.
,
4.1.2 The Nonconcerted Reaction of 1,3-Butadiene with Ethylene -- 4.1.3 Kinetic Isotope Effects and the Nature of the Diels -- Alder Transition State -- 4.1.4 Transition State Distortion Energy -- 4.2 The Cope Rearrangement -- 4.2.1 Theoretical Considerations -- 4.2.2 Computational Results -- 4.2.3 Chameleons and Centaurs -- 4.3 The Bergman Cyclization -- 4.3.1 Theoretical Considerations -- 4.3.2 Activation and Reaction Energies of the Parent Bergman Cyclization -- 4.3.3 The cd Criteria and Cyclic Enediynes -- 4.3.4 Myers -- Saito and Schmittel Cyclization -- 4.4 Bispericyclic Reactions -- 4.5 Pseudopericyclic Reactions -- 4.6 Torquoselectivity -- 4.7 Interview: Professor Weston Thatcher Borden -- References -- Chapter 5 Diradicals and Carbenes -- 5.1 Methylene -- 5.1.1 Theoretical Considerations of Methylene -- 5.1.2 The H -- C -- H Angle in Triplet Methylene -- 5.1.3 The Methylene and Dichloromethylene Singlet -- Triplet Energy Gap -- 5.2 Phenylnitrene and Phenylcarbene -- 5.2.1 The Low Lying States of Phenylnitrene and Phenylcarbene -- 5.2.2 Ring Expansion of Phenylnitrene and Phenylcarbene -- 5.2.3 Substituent Effects on the Rearrangement of Phenylnitrene -- 5.3 Tetramethyleneethane -- 5.3.1 Theoretical Considerations of Tetramethyleneethane -- 5.3.2 Is TME a Ground-State Singlet or Triplet? -- 5.4 Oxyallyl Diradical -- 5.5 Benzynes -- 5.5.1 Theoretical Considerations of Benzyne -- 5.5.2 Relative Energies of the Benzynes -- 5.5.3 Structure of m-Benzyne -- 5.5.4 The Singlet -- Triplet Gap and Reactivity of the Benzynes -- 5.6 Tunneling of Carbenes -- 5.6.1 Tunneling control -- 5.7 Interview: Professor Henry ``Fritz'' Schaefer -- 5.8 Interview: Professor Peter R. Schreiner -- References -- Chapter 6 Organic Reactions of Anions -- 6.1 Substitution Reactions -- 6.1.1 The Gas Phase SN2 Reaction.
,
6.1.2 Effects of Solvent on SN2 Reactions -- 6.2 Asymmetric Induction Via 1,2-Addition to Carbonyl Compounds -- 6.3 Asymmetric Organocatalysis of Aldol Reactions -- 6.3.1 Mechanism of Amine-Catalyzed Intermolecular Aldol Reactions -- 6.3.2 Mechanism of Proline-Catalyzed Intramolecular Aldol Reactions -- 6.3.3 Comparison with the Mannich Reaction -- 6.3.4 Catalysis of the Aldol Reaction in Water -- 6.3.5 Another Organocatalysis Example -- The Claisen Rearrangement -- 6.4 Interview: Professor Kendall N. Houk -- References -- Chapter 7 Solution-Phase Organic Chemistry -- 7.1 Aqueous Diels -- Alder Reactions -- 7.2 Glucose -- 7.2.1 Models Compounds: Ethylene Glycol and Glycerol -- 7.2.1.1 Ethylene Glycol -- 7.2.1.2 Glycerol -- 7.2.2 Solvation Studies of Glucose -- 7.3 Nucleic Acids -- 7.3.1 Nucleic Acid Bases -- 7.3.1.1 Cytosine -- 7.3.1.2 Guanine -- 7.3.1.3 Adenine -- 7.3.1.4 Uracil and Thymine -- 7.3.2 Base Pairs -- 7.4 Amino Acids -- 7.5 Interview: Professor Christopher J. Cramer -- References -- Chapter 8 Organic Reaction Dynamics -- 8.1 A Brief Introduction To Molecular Dynamics Trajectory Computations -- 8.1.1 Integrating the Equations of Motion -- 8.1.2 Selecting the PES -- 8.1.3 Initial Conditions -- 8.2 Statistical Kinetic Theories -- 8.3 Examples of Organic Reactions With Non-Statistical Dynamics -- 8.3.1 [1,3]-Sigmatropic Rearrangement of Bicyclo[3.2.0]hex-2-ene -- 8.3.2 Life in the Caldera: Concerted versus Diradical Mechanisms -- 8.3.2.1 Rearrangement of Vinylcyclopropane to Cyclopentene -- 8.3.2.2 Bicyclo[3.1.0]hex-2-ene 20 -- 8.3.2.3 Cyclopropane Stereomutation -- 8.3.3 Entrance into Intermediates from Above -- 8.3.3.1 Deazetization of 2,3-Diazabicyclo[2.2.1]hept-2-ene 31 -- 8.3.4 Avoiding Local Minima -- 8.3.4.1 Methyl Loss from Acetone Radical Cation.
,
8.3.4.2 Cope Rearrangement of 1,2,6-Heptatriene -- 8.3.4.3 The SN2 Reaction: HO-+CH3F -- 8.3.4.4 Reaction of Fluoride with Methyl Hydroperoxide -- 8.3.5 Bifurcating Surfaces: One TS, Two Products -- 8.3.5.1 C2 -- C6 Enyne Allene Cyclization -- 8.3.5.2 Cycloadditions Involving Ketenes -- 8.3.5.3 Diels -- Alder Reactions: Steps toward Predicting Dynamic Effects on Bifurcating Surfaces -- 8.3.6 Stepwise Reaction on a Concerted Surface -- 8.3.6.1 Rearrangement of Protonated Pinacolyl Alcohol -- 8.3.7 Roaming Mechanism -- 8.3.8 A Roundabout SN2 reaction -- 8.3.9 Hydroboration: Dynamical or Statistical? -- 8.3.10 A Look at the Wolff Rearrangement -- 8.4 Conclusions -- 8.5 Interview: Professor Daniel Singleton -- References -- Chapter 9 Computational Approaches to Understanding Enzymes -- 9.1 Models for Enzymatic Activity -- 9.2 Strategy for Computational Enzymology -- 9.2.1 High Level QM/MM Computations of Enzymes -- 9.2.2 Chorismate Mutase -- 9.2.3 Catechol-O-Methyltransferase (COMT) -- 9.3 De Novo Design of Enzymes -- References -- Index -- Supplemental Images.
,
Text in English.
Weitere Ausg.:
Print version: Bachrach, Steven M., 1959- Computational organic chemistry. Hoboken, New Jersey : Wiley, ©2014 ISBN 9781118291924
Sprache:
Englisch
Schlagwort(e):
Electronic books.
;
Electronic books.
;
Electronic books.
URL:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118671191
URL:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118671191