UID:
almahu_9948212082302882
Format:
1 online resource (404 pages)
ISBN:
0-12-815262-1
Content:
"Nuclear Reactor Dynamics and Control presents the latest knowledge and research in reactor dynamics, control and instrumentation; increasingly important factors in ensuring the safe and economic operation of nuclear power plants. This book provides next-generation engineers with one single resource containing all relevant information, including the operational features and dynamic characterises of key reactors such as large light-water reactors and CANDU heavy-water reactors, extended onto small modular reactors, sodium fast reactors, molten-salt reactors, gas-cooled reactors, and others. It covers the dynamic modelling, response characteristic, plant control strategies and other basic instrumentation factors, while also rounding off the discussion by considering neutron kinetics, thermal-hydraulics and control principles"--
Note:
Front Cover -- Dynamics and Control of Nuclear Reactors -- Copyright -- Dedication -- Contents -- Preface -- Communication with authors -- Acknowledgments -- Chapter 1: Introduction -- 1.1. Introduction -- 1.2. System dynamics and control design -- References -- Chapter 2: Nuclear reactor designs -- 2.1. Introduction -- 2.2. Generation I reactors -- 2.3. Generation II reactors -- 2.4. Generation III reactors -- 2.5. Generation III+ reactors -- 2.6. Generation IV reactors -- 2.7. Advanced reactors -- 2.8. Early twenty-first century construction -- References -- Further reading -- Chapter 3: The point reactor kinetics equations -- 3.1. Neutronics -- 3.2. Delayed neutrons -- 3.2.1. Delayed neutrons from fission products -- 3.2.2. Photoneutrons from nuclei excited by gamma rays -- 3.3. Development of the point reactor kinetics equations -- 3.4. Alternate choices for the neutronic variable -- 3.5. Perturbation form of the point kinetics equations -- 3.6. Transfer functions -- 3.7. Frequency response function -- 3.8. Stability -- 3.9. Fluid-fuel reactors -- References -- Further reading -- Chapter 4: Solutions of the point reactor kinetics equations and interpretation -- 4.1. Evolution of simulation methods -- 4.2. Numerical analysis -- 4.3. Maneuvers in a zero power reactor -- 4.4. Analytical solutions -- 4.5. Solutions for small perturbations -- 4.6. Sinusoidal reactivity and frequency response -- 4.7. Fluid fuel reactor response -- 4.8. The inhour equation -- References -- Further reading -- Chapter 5: Subcritical operation -- 5.1. The neutron source -- 5.2. Relation between neutron flux and reactivity in a subcritical reactor -- 5.3. The inverse multiplication factor -- 5.4. Responses during startup -- 5.5. Power ascension -- Further reading -- Chapter 6: Fission product poisoning -- 6.1. The problem -- 6.2. Dynamics of xenon-135.
,
6.2.1. Xe-135 production -- 6.2.2. Xe-135 losses -- 6.2.3. Equations for Xe-135 behavior -- 6.2.4. Steady state Xe-135 -- 6.2.5. Xe-135 poisoning -- 6.2.6. Behavior of Xe-135 after Startup -- 6.2.7. Xe-135 after Shutdown -- 6.2.8. Xe-135 poisoning after a power increase -- 6.2.9. Xe-135 poisoning after power maneuvers -- 6.2.10. Coupled neutronic-xenon transients -- 6.2.11. Xenon-induced spatial oscillations -- 6.2.12. Xenon in molten salt reactors -- 6.3. Samarium-149 poisoning -- 6.4. Summary -- References -- Chapter 7: Reactivity feedbacks -- 7.1. Basics -- 7.2. Fuel temperature feedback in thermal reactors -- 7.3. Moderator temperature feedback in thermal reactors -- 7.4. Pressure and void coefficients in thermal reactors -- 7.5. Fission product feedback -- 7.6. Combined reactivity feedback -- 7.7. Power coefficient of reactivity and the power defect -- 7.8. Reactivity feedback effect on the frequency response -- 7.9. Destabilizing negative feedback: A physical explanation -- 7.10. Explanation of stability using state-space representation -- References -- Chapter 8: Reactor control -- 8.1. Introduction -- 8.2. Open-loop and closed-loop control systems -- 8.3. Basic control theory -- 8.3.1. Manual control -- 8.3.2. On-off controller -- 8.3.3. Proportional controller -- 8.3.4. Integral controller -- 8.3.5. Differential controller -- 8.3.6. Combined controllers -- 8.3.7. An example of proportional and integral controller for a first order system -- 8.3.7.1. Proportional controller -- 8.3.7.2. Integral controller -- 8.3.8. Advanced controllers -- 8.4. Control of a zero-power reactor -- 8.5. Control options in power reactors -- 8.6. Effect of inherent feedbacks on control options -- 8.7. Load following operation -- 8.8. The role of stored energy -- 8.9. Steady-state power distribution control.
,
8.10. Important reactivity feedbacks and control strategies for various reactor types -- References -- Chapter 9: Space-time kinetics -- 9.1. Introduction -- 9.2. Diffusion theory -- 9.3. Multi-group diffusion theory -- 9.4. Calculation requirements -- 9.5. Computer software -- 9.6. Models and computational methods -- 9.6.1. Finite difference methods -- 9.6.2. Finite element method (FEM) -- 9.6.3. Modal methods -- 9.6.4. Quasi-static methods -- 9.6.5. Nodal methods -- References -- Chapter 10: Reactor thermal-hydraulics -- 10.1. Introduction -- 10.2. Heat conduction in fuel elements -- 10.3. Heat transfer to liquid coolant -- 10.4. Boiling coolant -- 10.5. Plenum and piping models -- 10.6. Pressurizer -- 10.7. Heat exchanger model -- 10.8. Steam generator model -- 10.8.1. U-Tube steam generator (UTSG) -- 10.8.2. Once-through steam generator (OTSG) -- 10.9. Balance-of-Plant (BOP) system models -- 10.10. Reactor system models -- References -- Further reading -- Chapter 11: Nuclear reactor safety -- 11.1. Introduction -- 11.2. Reactor safety principles -- 11.3. Early accidents with fuel damage -- 11.3.1. Accidents -- 11.3.2. Assessment -- 11.4. Analysis of potential reactor accidents -- 11.5. Accidents in Generation-II power reactors -- 11.5.1. Three mile Island [14] -- 11.5.2. Chernobyl [15] -- 11.5.3. Fukushima Dai-ichi [16] -- 11.6. Consequences and lessons learned -- References -- Chapter 12: Pressurized water reactors -- 12.1. Introduction -- 12.2. PWR characteristics [1-3] -- 12.3. The reactor core -- 12.4. The pressurizer -- 12.5. Steam generators -- 12.5.1. U-tube steam generator (UTSG) -- 12.5.2. Once-through steam generator (OTSG) -- 12.5.3. Horizontal steam generator -- 12.6. Reactivity feedbacks -- 12.7. Power maneuvering -- 12.8. Steady-state programs for PWRs -- 12.8.1. Heat transfer in a steam generator.
,
12.8.2. Fuel-to-coolant heat transfer -- 12.8.3. Equivalence between reactor power and power delivered to the steam generator at steady state -- 12.8.4. Energy change in the coolant -- 12.8.5. Development of a steady-state program -- 12.8.6. Steady-state program for PWRs with once-through steam generators (OTSG) -- 12.9. Control rod operating band and control rod operation -- 12.10. Feedwater control for PWR with U-tube steam generators [2, 4, 5] -- 12.11. Control of a PWR with once-through steam generators [3] -- 12.12. Turbine control -- 12.13. Summary of main PWR controllers -- 12.14. PWR safety systems -- 12.15. Example of a PWR simulation -- References -- Further reading -- Chapter 13: Boiling water reactors -- 13.1. Introduction -- 13.2. History of BWR design evolution -- 13.2.1. BWR-1 -- 13.2.2. BWR-2 -- 13.2.3. BWR-3 -- 13.2.4. BWR-4 -- 13.2.5. BWR-5 -- 13.2.6. BWR-6 -- 13.2.7. ABWR -- 13.3. Characteristics of BWRs -- 13.3.1. General features of a BWR -- 13.3.2. Recirculation flow and jet pumps -- 13.3.3. Other features of BWRs -- 13.4. Reactivity feedbacks in BWRs -- 13.5. Reactivity and recirculation flow -- 13.6. Total reactivity balance -- 13.7. BWR dynamic models -- 13.8. BWR stability problem and impact on control -- 13.9. The power flow map and startup -- 13.10. On-line stability monitoring -- 13.11. Power maneuvering -- 13.12. BWR control strategy -- 13.13. BWR safety -- 13.14. Advantages and disadvantages -- References -- Further reading -- Chapter 14: Pressurized heavy water reactors -- 14.1. Introduction -- 14.2. PHWR characteristics -- 14.3. Neutronic features [3] -- 14.4. Temperature feedback in heavy water reactors -- 14.5. The void coefficient -- 14.6. Reactivity control mechanisms -- 14.7. Control systems -- 14.7.1. Unit power regulator -- 14.7.2. Reactor regulating system -- 14.7.3. Pressure and inventory control.
,
14.7.4. Steam generator level control -- 14.7.5. Steam generator pressure control -- 14.8. Maneuvering -- 14.9. Reactor dynamics -- 14.9.1. Modeling strategy -- 14.9.2. Reactor power response to reactivity insertion -- References -- Chapter 15: Nuclear plant simulators -- 15.1. Introduction -- 15.2. Types of simulators and their purpose -- 15.2.1. Simulator games -- 15.2.2. Desk-top simulators -- 15.2.3. Control room simulators -- 15.3. Desk-top simulators -- 15.3.1. Introduction -- 15.3.1.1. PC simulation -- 15.3.1.2. Using an IAEA simulator -- 15.3.2. Simulation of PWR and BWR plant transients -- 15.3.2.1. PWR simulation -- 15.3.2.2. BWR simulation -- 15.3.3. How to obtain an IAEA simulator? -- 15.3.4. Internet-based desk-top simulators -- 15.4. Control room simulators -- References -- Chapter 16: Nuclear plant instrumentation -- 16.1. Introduction -- 16.2. Sensor characteristics -- 16.2.1. Neutron and gamma ray detectors -- 16.2.1.1. Ionization chambers -- 16.2.1.2. Fission detectors -- 16.2.1.3. Self-powered neutron detectors -- 16.2.1.4. Scintillation detectors -- 16.2.1.5. Gamma thermometers -- 16.2.1.6. Nitrogen-16 measurement -- 16.2.2. Temperature sensors -- 16.2.2.1. Resistance thermometers -- 16.2.2.2. Thermocouples -- 16.2.2.3. Thermowells and bypass installation -- 16.2.2.4. Advanced temperature sensors -- 16.2.3. Pressure sensors -- 16.2.4. Flow sensors -- 16.2.4.1. Flow vs. pressure drop -- 16.2.4.2. Advanced flowmeters -- 16.2.5. Level sensors -- 16.2.5.1. Differential pressure -- 16.2.5.2. Bubbler -- 16.2.6. Actuator status sensors -- 16.3. PWR instrumentation -- 16.4. BWR instrumentation -- 16.5. CANDU (PHWR) reactor instrumentation -- 16.6. High temperature reactor instrumentation -- 16.6.1. Liquid metal fast breeder reactor (LMFBR) instrumentation -- 16.6.2. High temperature gas-cooled reactor (HTGR) instrumentation.
,
16.6.3. Molten salt reactor instrumentation.
Additional Edition:
ISBN 0-12-815261-3
Language:
English