Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9948212104702882
    Format: 1 online resource (291 pages)
    ISBN: 0-444-64016-9 , 0-444-64015-0
    Note: Front Cover -- Heterogeneous Photocatalysis -- Copyright Page -- Contents -- List of Contributors -- Preface -- 1 Heterogeneous Photocatalysis and Catalysis: An Overview of Their Distinctive Features -- 1.1 Introduction -- 1.2 Definitions -- 1.2.1 Catalysis -- 1.2.2 Photocatalysis -- 1.3 Reaction Steps -- 1.3.1 Catalysis -- 1.3.2 Photocatalysis -- 1.4 Solids -- 1.4.1 Catalysis -- 1.4.2 Photocatalysis -- 1.5 Reactors -- 1.5.1 Catalysis -- 1.5.2 Photocatalysis -- 1.6 Quantitative Parameters to Assess the Process Performance -- 1.6.1 Catalysis -- 1.6.2 Photocatalysis -- 1.7 Kinetic Modeling -- 1.7.1 Catalysis -- 1.7.2 Photocatalysis -- References -- 2 Preparation of Catalysts and Photocatalysts Used for Similar Processes -- 2.1 Introduction -- 2.2 Bulk Catalysts -- 2.2.1 Sol-Gel Process -- 2.2.2 Precipitation -- 2.2.3 Coprecipitation -- 2.2.4 Hydrothermal/Solvothermal Syntheses -- 2.2.5 Solid-State Reactions -- 2.2.6 Spray Pyrolysis -- 2.2.7 Flame Syntheses -- 2.2.7.1 Flame Hydrolysis -- 2.2.7.2 Flame Spray Pyrolysis -- 2.2.8 Sonochemical Method -- 2.2.9 Microwave Irradiation -- 2.3 Supported Catalysts -- 2.3.1 Deposition-Precipitation -- 2.3.2 Impregnation -- 2.3.3 Preparation of Films -- 2.3.3.1 Wet Coating Technologies -- 2.3.3.1.1 Dip Coating -- 2.3.3.1.2 Spin Coating -- 2.3.3.2 Chemical Vapor Deposition -- 2.3.3.3 Physical Vapor Deposition -- 2.3.3.3.1 Vacuum Evaporation -- 2.3.3.3.2 Sputter Deposition -- 2.3.3.3.3 Arc Vapor Deposition -- 2.3.3.3.4 Pulsed-Laser Deposition -- 2.3.3.4 Chemical Bath Deposition -- 2.3.3.5 Spray Pyrolysis Deposition -- 2.3.3.6 Electrodeposition -- References -- 3 Bulk and Surface Characterization Techniques of TiO2 and TiO2-Doped Oxides -- 3.1 Introduction -- 3.2 Characterization Techniques -- 3.2.1 X-Ray Diffraction -- 3.2.2 Transmission Electron Microscopy. , 3.2.3 Electron Paramagnetic Resonance or Electron Spin Resonance -- 3.2.4 X-Ray Photoelectron Spectroscopy -- 3.2.5 Acidity Characterization -- 3.3 Conclusions -- Acknowledgements -- References -- 4 (Photo)catalyst Characterization Techniques: Adsorption Isotherms and BET, SEM, FTIR, UV-Vis, Photoluminescence, and Elec... -- 4.1 Adsorption Isotherms and Brunauer-Emmett-Teller Surface Area Determination -- 4.1.1 Introduction -- 4.1.2 Adsorption-Desorption Phenomena -- 4.1.3 Classification of Adsorption Isotherms -- 4.1.3.1 Type I -- 4.1.3.2 Type II -- 4.1.3.3 Type III -- 4.1.3.4 Type IV -- 4.1.3.5 Type V -- 4.1.3.6 Type VI -- 4.1.4 Adsorption Hysteresis -- 4.1.5 Adsorption Models -- 4.1.5.1 Langmuir Isotherm -- 4.1.5.2 Temkin and Freundlich Isotherms -- 4.1.5.3 Brunauer-Emmett-Teller Isotherm -- 4.1.6 Brunauer-Emmett-Teller Surface Area Determination -- 4.1.6.1 Preparation of Sample -- 4.1.6.2 Used Gases for Brunauer-Emmett-Teller Analysis -- 4.1.6.3 Brunauer-Emmett-Teller Instrument and its Working Principle -- 4.2 Scanning Electron Microscopy -- 4.2.1 Introduction -- 4.2.2 Principle of Scanning Electron Microscopy -- 4.2.3 Applications of Scanning Electron Microscopy -- 4.2.3.1 Nanostructures: Nanoparticles, Nanotube, Nanowire, and Nanorods -- 4.2.3.2 Membranes -- 4.2.3.3 Thin Films -- 4.3 Fourier-Transform Infrared Spectroscopy -- 4.3.1 Introduction -- 4.3.2 Operating Principle and Main Setups for Fourier-Transform Infrared Spectroscopy of Catalysts -- 4.3.3 Applications of Fourier-Transform Infrared Spectroscopy in Key Catalytic Reactions -- 4.3.3.1 Reforming Reactions -- 4.3.3.2 CO2 Reduction -- 4.3.3.3 Nitrogen Oxides Reduction -- 4.3.3.4 Alcohol Oxidation -- 4.4 UV-Visible Spectroscopy -- 4.4.1 Introduction -- 4.4.2 Interaction of Light With the Matter -- 4.4.3 Band-Gap Determination -- 4.4.4 Determination of Oxidation States of Metals. , 4.5 Photoluminescence Spectroscopy -- 4.6 Electrochemical Characterizations -- 4.6.1 Introduction -- 4.6.2 Cyclic and Linear Sweep Voltammetry -- 4.6.3 Choronoamperometry -- 4.6.4 Electrochemical Impedance Spectroscopy -- 4.6.5 Determination of the Valence and Conduction Band Edge -- References -- 5 Photocatalytic and Catalytic Reactions in Gas-Solid and in Liquid-Solid Systems -- 5.1 Introduction -- 5.2 Catalytic and Photocatalytic Reactions in Gas-Solid Regimen -- 5.2.1 Some Examples of Reactions in the Presence of TiO2-Based Materials Used as the (Photo)catalysts -- 5.2.2 Some Examples of Reactions in the Presence of Different (Photo)catalysts from TiO2 -- 5.3 Catalytic and Photocatalytic Reactions in Liquid-Solid Regimen -- 5.3.1 Some Examples of Reactions in the Presence of TiO2-Based Materials Used as the (Photo)catalysts -- 5.3.2 Some Examples of Reactions in the Presence of Different (Photo)catalysts from TiO2 -- 5.4 Conclusions -- References -- 6 Special Needs and Characteristic Features of (Photo)catalytic Reactors with a Review of the Proposed Solutions -- 6.1 Introduction -- 6.2 Some Issues of Photocatalytic Systems -- 6.2.1 Why Photocatalytic Systems Are More Complex Than Other Reacting Systems? -- 6.2.2 Are the Photons Reactants? -- 6.2.3 Radiant Energy Transport in a Photocatalytic System -- 6.2.4 The Importance of the Optical Thickness -- 6.3 Elements of Engineering of Photocatalytic Reactors -- 6.3.1 The Kinetic Equation of Photocatalytic Reactors -- 6.3.2 Kinetic Analysis of Slurry Reactions -- 6.3.3 Optimization of the Thickness of a Photocatalytic Film -- 6.3.3.1 Slurry Systems -- 6.3.3.2 Systems With Photocatalyst Immobilized Onto a Support -- 6.3.4 Mathematical Modeling of a Photocatalytic Reactor -- 6.3.4.1 Radiant Energy Transfer Equation in the Annular Reactor -- 6.3.4.2 Flow Field -- 6.3.4.3 Substrate Mass Balances. , 6.3.4.4 Mass Balance in the Tank -- 6.3.4.5 Mass Balance in the Reactor -- 6.3.5 Radiative Yields, Productivity, and Effectiveness Factor -- 6.4 Conclusions -- References -- 7 Kinetic Aspects of Heterogeneous Catalytic Versus Photocatalytic Reactions -- 7.1 Introduction -- 7.2 Theories of Adsorption -- 7.3 Kinetic Models -- 7.4 Catalytic Reaction Mechanisms and Models -- 7.5 Turnover Frequency -- 7.6 Photocatalytic Reaction Mechanisms and Models -- 7.7 Light-Intensity Dependence -- 7.8 Quantum Yield -- 7.9 Conclusions -- References -- 8 Economic Assessment and Possible Industrial Application of a (Photo)catalytic Process: A Case Study -- 8.1 Introduction -- 8.2 Previous Steps: Inventory of Devices and Data -- 8.2.1 Solarbox at Laboratory Scale (SB-UB) -- 8.2.2 Black Light Blue Reactor at Laboratory Scale (BLB-UB) -- 8.2.3 Compound Parabolic Collectors at Pilot Plant Scale (CPC-UB) -- 8.2.4 Compound Parabolic Collectors at Pilot Plant Scale: Plataforma Solar de Almería-BRITE (CPC-PSA1) -- 8.2.5 Compound Parabolic Collectors at Pilot Plant Scale: Plataforma Solar de Almería-CADOX (CPC-PSA2) -- 8.3 Costs Estimation -- 8.3.1 Costs of Devices, Equipment, Instruments, and Apparatus -- 8.3.2 Additional Costs -- 8.3.3 Taxes and Interest. Yearly Cost of Device -- 8.3.4 Operating Costs -- 8.3.5 Total Costs -- 8.4 Comparisons, Influence of Device and Approach to Scaling Up -- 8.4.1 Comments on Yearly Costs and Cost per Experiment -- 8.4.2 Efficiencies -- 8.4.3 The Cost of Scientific Papers -- 8.5 Final Remarks or Some Highlights -- 8.6 Nomenclature and acronyms -- References -- Index -- Back Cover.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages