UID:
almafu_9960119436902883
Umfang:
1 online resource (x, 340 pages) :
,
digital, PDF file(s).
ISBN:
0-511-56920-3
Serie:
Cambridge tracts in mathematics ; 128
Inhalt:
Originally published in 2000, this was the first book to present the basic theory of the symmetry of solutions to second-order elliptic partial differential equations by means of the maximum principle. It proceeds from elementary facts about the linear case to recent results about positive solutions of non-linear elliptic equations. Gidas, Ni and Nirenberg, building on work of Alexandrov and of Serrin, have shown that the shape of the set on which such elliptic equations are solved has a strong effect on the form of positive solutions. In particular, if the equation and its boundary condition allow spherically symmetric solutions, then, remarkably, all positive solutions are spherically symmetric. Results are presented with minimal prerequisites in a style suited to graduate students. Two long and leisurely appendices give basic facts about the Laplace and Poisson equations. There is a plentiful supply of exercises, with detailed hints.
Anmerkung:
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
,
Some Notation, Terminology and Basic Calculus -- 1. Introduction -- 2. Some Maximum Principles for Elliptic Equations -- 3. Symmetry for a Non-linear Poisson Equation in a Symmetric Set [Omega] -- 4. Symmetry for the Non-linear Poisson Equation in R[superscript N] -- 5. Monotonicity of Positive Solutions in a Bounded Set [Omega] -- App. A. On the Newtonian Potential -- App. B. Rudimentary Facts about Harmonic Functions and the Poisson Equation -- App. C. Construction of the Primary Function of Siegel Type -- App. D. On the Divergence Theorem and Related Matters -- App. E. The Edge-Point Lemma.
,
English
Weitere Ausg.:
ISBN 0-521-17278-0
Weitere Ausg.:
ISBN 0-521-46195-2
Sprache:
Englisch
URL:
https://doi.org/10.1017/CBO9780511569203